首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 780 毫秒
1.
采用分子量500万的聚氧化乙烯和无水溴化铜,通过混溶蒸发法制备成高聚物固体电解质P(EO)n-CuBr2薄膜,并在0.1~300MPa范围不同的流体静水压下详细测量其复平面阻抗谱,分别得到在不同压力下离子电导率和介电常数与测量频率的关系.进一步解谱准确地求出P(EO)n-CuBr2(n=12、16)薄膜离子电导率和介电常数的静水压效应,并结合X-光物相分析,根据离子迁移通道的物理图象和高聚物的极化机构进行了初步的讨论.添加20%的增塑剂碳酸丙烯酯,较大改进了压力下的导电性.120~300MPa的离子电导率提高一个数量级  相似文献   

2.
苏Fang  谢斌 《高分子学报》1996,(6):650-659
采用分子量500万的聚氧化乙烯和无水溴化铜,通过混溶蒸发法制备成高聚物固体电解质P(EO)n-CuBr2薄膜,并在0.1~300MPa范围不同的流体静水压下详细测量其复平面阻抗谱,分别得到在不同压力下离子电导率和介电常数与测量频率的关系.进一步解谱准确地求出P(EO)n-CuBr2(n=12、16)薄膜离子电导率和介电常数的静水压效应,并结合X-光物相分析,根据离子迁移通道的物理图象和高聚物的极化机构进行了初步的讨论.添加20%的增塑剂碳酸丙烯酯,较大改进了压力下的导电性.120~300MPa的离子电导率提高一个数量级  相似文献   

3.
聚2,5-二甲氧基苯胺薄膜电极对氢醌的电催化作用   总被引:1,自引:0,他引:1  
本文研究了电化学方法制备的聚2,5-二甲氧基苯胺(P25DMAn)薄膜电极对水溶液中的氢醌的电催化作用,以及影响催化作用的主要因素.研究结果表明,在酸性较强的水溶液中,在较宽的浓度范围内(氢醌的浓度为1×10~(-3)~1×10~(-2)mol/L)均有很好的电催化作用。催化电流与氢醌浓度呈良好的线性关系.用旋转园盘电极研究了催化过程动力学,求出了催化反应的动力学参数。这种修饰电极有很好的化学稳定性和电化学稳定性,是一种很有应用前景的修饰电极。  相似文献   

4.
制备了高氯酸锂与乙酰胺和乙烯脲形成的二元低温熔盐电解质,采用差示扫描量热法、交流阻抗法和循环伏安法分别对其热学、电化学性质进行了研究.测试结果表明,高氯酸锂-乙酰胺体系具有较好的热稳定性和高的电导性,配比n(LiClO4):n(Acetamide)=1.0:5.5的样品室温(25 ℃)电导率为1.25×10-3 S•cm-1,80 ℃电导率为1.15×10-2 S•cm-1;其电化学稳定电位窗近3 V左右.  相似文献   

5.
RExOy.nH2O对氟离子的吸附性能   总被引:3,自引:0,他引:3  
La、Ce等稀土水含氧化物对阴离子的吸附性早有研究「‘-‘1,但从混合轻稀土氯化物制得的水合氧化物吸附F一的研究报道较少.为探讨难溶金属水合氧化物的除氟性能,本文以混合轻稀土氯化物为原料,制得其水含氧化物(RExOy·nH。O),采用高聚物造粒,研究了粒状RExOy·nH。O对F一的吸附性能及吸附机理.所用混合轻稀土氯化物由包头钢铁稀土公司提供,其主要组成(以氧化物计)为:CeO。(50%)、Nd。O3(25%)、La。O。(15%)、P36Oll(8%).聚丙烯睛分子量为(2.5~5)X10‘.其它试剂为分析纯.RExO.·nH。O参照文…  相似文献   

6.
合成了一系列由聚(1-乙烯基-3-乙酸烷基酯咪唑)阳离子和二(三氟甲基磺酰亚胺)阴离子(TFSI)组成的聚离子液体并进行了表征.热重分析(TGA)和电导率分析表明,在聚(甲基丙烯酸甲酯,醋酸乙烯酯)(P(MMA—VAc))基体中掺杂聚离子液体后,体系的热稳定性和离子电导率均大为改善,红外光谱(FT—IR)、示差扫描量热分析(DSC)、X射线衍射(XRD)和扫描电子显微镜(SEM)等测试结果亦可佐证.讨论了离子液体的结构以及不同种锂盐(LiC104,LiBF4,LiTFSI)对电解质性能的影响.由PIL/P(MMA—VAc)/LiTFSI组成的共混电解质膜,在可见光下透过率≥90%,可作为离子导电材料用于电致变色器件(ECD),显示了其优良的电化学性能.  相似文献   

7.
双线性外推法在电化学中的应用   总被引:1,自引:0,他引:1  
李前荣 《化学通报》1996,(11):53-57
双线性外推法在电化学中的应用王基镕,李前荣(中国科技大学化学物理系,中国科技大学结构分析中心,合肥230026)标准电极电位(E)、极限摩尔电导率(A、λ)、极限迁移数(t)、平均活度系数(γ)、电离常数(K)等是电化学中的基本常数,以往多采用极限外...  相似文献   

8.
单核Mn(III)-Shiff碱配合物的晶体结构与性质   总被引:1,自引:0,他引:1  
报导了两个Schiff碱配体的单核Mn(Ⅲ)配合物([Mn(Ⅲ)(L1)(H2O)]4CIO。·ZH。O(1)和[Mn(ffi)(LZ)厂Ic。·ZH。O(2》的合成、晶体结构及性反X一衍射晶体结构分析证实:配合物1的晶体属于正交晶系,Pna21空间群.其晶胞参数为α=10.932(7)A,b=22.393(5)A,c=8.960(3)A,V=2193(1)A3,Z=4.2的晶体属于正交晶系,P212121空间群,α=17.345(3)A,b=17.905(2)A,c=7.789(1)A,V=2418.9(6)A3,Z=4.电化学研究结果显示:配合2是稳定的电化学产物,而1在电场作用下容易歧化.由此说明配位环境是影响化合物稳定性的重要因素.  相似文献   

9.
苯胺在酸性溶液中经化学和电化学氧化所得聚合物有良好的导电性和很高的稳定性。由于导电高聚物的不溶和不熔,使许多研究工作难以深入,实际应用也受到限制,在导电高聚物方面存在的这些实际问题促使了对可溶性导电高聚物合成的研究。通过化学法合成可溶性聚(o-,m-)甲苯胺的研究结果表明,甲基在苯环上的位置对聚苯胺衍生物的电导率、溶解性等都有较明显的影响。最近,通过电化学聚合合成了聚邻甲基苯胺。  相似文献   

10.
聚苯胺/PA-6导电复合膜的电化学合成与性能   总被引:3,自引:0,他引:3  
用电化学复合法,以聚己内酰胺为膜基,通过氟硼酸掺杂,使苯胺电解聚合,制成一种新型的聚苯胺/聚己内酰胺(PAn/PA-6)复合膜,考察了电流密度、掺杂剂浓度及苯胺浓度等因素对导电复合膜的电导率、机械性能的影响。  相似文献   

11.
Ionic liquid gel polymers have widely been used as the electrolytes in all-solid-state supercapacitors, but they suffer from low ionic conductivity and poor electrochemical performance. Arc discharge is a fast, low-cost and scalable method to prepare multi-layered graphene nanosheets, and as-made graphene nanosheets (denoted as ad-GNSs) with few defects, high electrical conductivity and high thermal stability should be favorable conductive additive materials. Here, a novel ionic liquid gel polymer electrolyte based on an ionic liquid (EM1MNTF2) and an copolymer (P(VDF-HFP)) was modified by the addition of ad-GNSs as an ionic conducting promoter. This modified gel electrolyte shows excellent thermal stability up to 400 ℃ and a wide electrochemical window of 3 V. An all-solid-state supercapacitor based on commercial activated carbon was fabricated using this modified ionic liquid gel polymer electrolyte, which shows obviously improved electrochemical behaviors compared with those of the corresponding all-solid-state supercapacitor using pure ionic liquid gel polymer electrolyte. Specially, smaller internal resistance, higher specific capacitance, better rate performance and cycling stability are achieved. These results indicate that the ionic liquid gel polymers modified by ad-GNSs would be promising and suitable gel electrolytes for high performance all-solid-state electrochemical devices.  相似文献   

12.
The electrical conductivity of aromatic and heteroaromatic polymers as well as polymers with aromatic, heteroaromatic and vinylene units in the main chain, can be enhanced by oxidation. In a single electron transfer reaction, a polymer with a salt structure (“doped polymer”) can be formed. Such polymers can also be prepared in a one-step reaction from low-molecular weight compounds by oxidants, as well as by electrochemical reaction. Electrochemically produced samples have higher electrical conductivities (as high as 6298K = 0,5 Ω−1 · cm−1) than samples made by chemical oxidation from the same starting material.  相似文献   

13.
Two organic conjugated molecules composed of central carbazole and bithiophene groups were prepared via the Stille coupling reaction, conductive polymers were prepared by elec-trochemical method. Structure and photoelectric research of polymers were investigated. 1H NMR and 13C NMR of molecules were consistent with the theorical results, FT-IR showed electrochemical polymeric site were α-position of thiophene units. The smooth morphology and distributed holes were beneficial to improve the electrical conductivity by SEM. When applied voltage was from -0.1 V to 1.2 V, both of the polymer films P1 and P2 showed good electrochromic performances. Compared with P1, P2 had better electrochemical stability and thermal stability due to the better coplanarity by repeated cyclic voltammograms and TGA. The P2 was a promising material in the electrochemical field, meanwhile, it showed that the monomer structure had greatly impact on the performance of polymer.  相似文献   

14.
Multilayered systems of poly(3,4-ethylendioxythiophene) and poly(N-methylpyrrole) have been prepared using a layer-by-layer electrodeposition technique. The electrochemical and electrical properties of films formed by 3, 5, 7 and 9 layers have been characterized and compared with those of pure polymers and copolymers prepared from mixtures of 3,4-ethylendioxythiophene and N-methylpyrrole with various concentration ratios. Results indicate that the electroactivity and electrical stability of the multilayered systems are higher than those of both poly(3,4-ethylendioxythiophene) and copolymers. Furthermore, these electrochemical properties improve when the number of layers increases. On the other hand, the electrical conductivity of the multilayered systems is slightly lower than that of pure poly(3,4-ethylendioxythiophene), and significantly higher than those of poly(N-methylpyrrole) and copolymers.  相似文献   

15.
The mechanism of the electropolymerization of thiophene derivatives has been investigated by varying the electrosynthesis conditions and the monomer structure. The results of these analyses led to the definition of optimized electrosynthesis conditions allowing the control of the electrical and electrochemical properties of poly(thiophenes). On the basis of these results, the properties of these polymers have been modified by means of a new one-step electrosynthesis of conducting composite materials and by the direct electropolymerization of tailor-made functionalized monomers. For this purpose, the steric conditions associated to the various possibilities of covalent derivatization have been analyzed, leading to the definition of a “functionalization space”, compatible with the preservation of high conductivity and electrochemical reversibility in the resulting polymers. This concept has been applied to the synthesis of highly conducting chiral poly(thiophenes) on which an effect of enantioselective molecular recognition has been demonstrated for the first time.  相似文献   

16.
In this study, polymers of substitute aromatic amine compounds were synthesized by chemical oxidative polycondensation in aqueous alkaline medium using NaOCl as oxidant. The structures of synthesized compounds were confirmed by FT‐IR, UV‐Vis and NMR analyses. The characterizations of synthesized compounds were made by fluorescence, TG‐DTA, DSC, scanning electron microscopy (SEM) and Brunauer‐Emmett‐Teller (BET) surface area measurements. In addition, electrochemical and electrical conductivity values of compounds were carried out with cyclic voltammetry (CV) and four points probe technique measurements, respectively. Synthesized polymers viewed structural change, optical, electrochemical and thermal differences.  相似文献   

17.
Redox conducting polymers “Wires” have been widely used as a electron mediators between enzyme active sites and electrode surfaces in electrochemical biosensors. We report that a peroxidase is able to generate a molecular wire through its own enzymatic catalyzed reaction. The catalytic reaction is the polymerization of aniline to form conducting polyaniline. The polyaniline molecular wire is then capable of transducing the enzyme’s catalytic turnover into an electrochemical signal. In effect we demonstrate the selective bridging of the gap between nano and macroscales in a functional fashion (electrical conductivity) using the catalytic capabilities of the nanostructure.  相似文献   

18.
Conducting polymers (CPs) is one of intelligent biomaterials with the specific properties of reversible redox states, which have a significant effects on the cell behaviors and nerve tissue regeneration. However, the effects of CPs with different electrical conductivity on the behaviors of nerve cells are rarely reported. Therefore, a kind of Poly(3‐hexylthiophene) (P3HT) with certain molecular weight is synthesized by Kumada catalyst transfer polymerization (KCTP) method and employed to prepare bioabsorbable and electroactive intelligent composites of Poly(3‐hexylthiophene)/Poly(glycolide‐lactide) (P3HT/PLGA). FeCl3 doping electroactive membranes with different electrical conductivities are prepared to investigate the cell behaviors. On the substrate with higher electrical conductivity, the proliferation of rat adrenal pheochromocytoma cells (PC12 cells) is significantly promoted and neurite length is increased obviously. In particular, the most significant improvements are the neuron gene expression of Synapsin 1 and microtubule‐associated protein 2 (MAP2) by the composites with high conductivity. These results suggest that P3HT/PLGA with suitable electrical conductivity have a positive role in promoting neural growth and differentiation, which is promising for advancing potential application of nerve repair and regeneration.  相似文献   

19.
Conductive polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) are used in a wide range of applications as transparent electrodes, hole injecting layers or thermoelectric materials for room-temperature applications. However, progress is needed to enhance the electrical conductivities of the materials and to provide understanding about their structure–transport relationships. This work presents the synthesis of highly conductive PEDOT-based polymers using iron(iii) trifluoromethanesulfonate as oxidant for the first time. The metallic behaviour of the polymer is revealed by conductivity monitoring from 3 to 300 K. The electrical conductivity is further improved (to 2273 S cm–1) using acids, leading to a positive temperature coefficient of resistivity at an unprecedented 45.5% oxidation state. X-ray photoemission spectroscopy (XPS) and time of flight-secondary ion mass spectrometry (ToF-SIMS) analyses demonstrate a complete replacement of the trifluoromethanesulfonate anions by hydrogen sulphate counter ions. This substitution results in an increased concentration of charge carriers (measured in organic electrochemical transistors) along with an enhancement of the mean size of crystalline domains, highlighted by small and wide angle X-ray scattering (SAXS/WAXS), which explains the 80% increase of electrical conductivity.  相似文献   

20.
欧阳建勇 《物理化学学报》2018,34(11):1211-1220
因为导电高分子结合了金属与塑料的优点,他们一直受到很大的关注。但是他们的应用受到一些因素的影响,包括他们的电学性质,稳定性和可加工性。近来,导电高分子的性能得到很大的提高。他们在许多领域的重要应用被论证,比如透明电极,可拉伸电极,神经界面,热电转换和能量储存。这篇文章简单综述了导电高分子的电导提高和它们在热电转换,超级电容器和电池的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号