首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
研究了在35±0.1℃、离子强度0.5mol/L(KCl)条件下,甲酸根、乙酸根、丙酸根和丁酸根分别催化Cu(Ⅱ)离子与四溴化间-四(N-乙酸甲酯基-3-吡啶基)卟啉(H2Tβ-N-ACMspyPBr4)的反应动力学及其机理,该类反应对卟啉和Cu(Ⅱ)离子均为一级反应,反应动力学方程为:d[CuP^4+]/dt=k{1.0+b[A^-])/(1.0+K3,4.[H^+]^2}[Cu^2+][P]T  相似文献   

2.
以一个真实的Mannich试剂(CH3)2N+CH2·Cl-作为研究对象.根据AM1方法的计算结果,胺、醛及伪酸在中性和酸性介质中的经典Mannich反应的关键步骤的活化能分别为390.0和321.8kJ/mol.而由新Mannich试剂参与的Mannich反应的关键步骤活化能则为278.6kJ/mol.因此新Mannich试剂可以提高反应速率,还分析了新Mannich试剂能降低反应活化能的原因.此外还讨论了另一种可大大降低活化能的新Mannich反应机理本文是研究Mannich反应机理的系列文章之一.  相似文献   

3.
研究了二(2,4,4-三甲基戊基)膦酸的正辛烷溶液从盐酸介质中萃取钍的机理。在未控制离子强度下,萃取平衡反应为:Th^4++Cl^-+3(HA)2(o)→ThClA3(HA)3(o)+3H^+。在控制离子强度为1.0mol/L时,萃取反应为Th^4++2Cl^-+3(HA)2(O)→ThCl2A2.(HA)4(P)+2H^+。用饮和法确定的萃合物组成为ThClA3.计算了萃取反应的平衡常数及热力学  相似文献   

4.
用新型的具有恒定温度环境的反应热量计,以6mol·dm-3HCl溶液为量热溶剂,分别测定了HSAO,Ni(Ac)2和Ni(SAO)2,HAc先后溶于该溶剂的溶解焓.设计了一个新的热化学循环,计算得到该配位反应的反应焓ΔrH=-86.075kJ·mol-1,并估算出了ΔfH[Ni(SAO)2,298K]=-401.336kJ·mol-1.  相似文献   

5.
研究了在35±0.1℃、离子强度0.5mol/L(KCl)条件下,甲酸根、乙酸根、丙酸根和丁酸根分别催化Cu(Ⅱ)离子与四溴化间-四(N-乙酸甲酯基-3-吡啶基)卟啉(H2TB-N-ACMSpyPBr4)的反应动力学及其机理,该类反应对卟啉和Cu(Ⅱ)离子均为一级反应,反应动力学方程为:d[Cup4+]/dt=k{(1.0+b[A-])/(1.0+K3,4·[H+]2)}[Cu2+][p]T,在甲酸-甲酸根缓冲体系中,k=2.98mol-1dm3·sec-1,b=154×102mol-2,dm6·sec-1,K3,4=6.928×103;在乙酸-乙酸根缓冲体系中,k=3.42mol-1·dm3·sec-1,b=2.29×103mol-2·dm6·sec-1,K3,4=6.928×103;在丙酸-丙酸根缓冲体系中,k=3.00mol-1·dm3·sec-1,b=5.90×102mol-2·dm6·sec-1,K3,4=7.007×103;在丁酸-丁酸根缓冲体系中,k=3.14mol-1·dm3·sec-1,b=3.75×102mol-2·dm6·sec-1,K3,4=6.921×103;讨论了有机酸根的碱性与  相似文献   

6.
研究了三(2-苯并咪唑甲基)胺-锌(Ⅱ)配合物作为水解酶模拟物催化乙酸对硝基苯酯(NA)水解动力学。结果表明,催化水解速率对NA及配合物浓度呈一级反应。水解速率遵循速率方程v=(kcat[Zn]+kOH[OH^-]+k0)[NA]。在298K,I=0.10mol/L KNO3,0.02mol/L Tris,40%CH3CN水溶液中,二级反应速率常数kcat和kOH分别为0.12、1.45mol^-  相似文献   

7.
掺杂Cu^2+离子水滑石[CdxMg6—xAl2(OH)16]^2+[S·2H2O…   总被引:3,自引:0,他引:3  
合成了掺杂Cu^2+离子水滑石〔CdxMg6-xAl2(OH)16〕^2+〔S·2H2O〕^2-,研究了它的导电性质及其影响因素,计算得到了383 ̄523K时的导电活化能为7.18kJ/mol。  相似文献   

8.
用量子化学从头计算方法在MP2/6-31G(d)水平上计算了单重态的CH2与二甲醚中C-H键插入反应的过程,并在MP4/6-31G(d)水平上计算了反应物,过渡态和产物的能量,反应仅具有一个8.1kJ/mol的早期势垒,反应过程是卡宾的一个亲电-亲核过程,在插入过程中,卡宾空的p轨道和占有一对孤电子的σ轨道分别指出C-H键的H原子和C原子。  相似文献   

9.
用量子化学从头计算方法在MP2/6-31G(g)水平上研究了CX2(X=H,F,Cl)与甲乙醚的C-H键插入反应,在甲乙醚的3个不同的C-H键(即甲基中a′-C-H键,乙基中a-C-H键和β-C-H键)上,反应势垒分别为123.8,32.5,157.3kJ/mol(X=Cl)和254.3,130.0.304.2kJ/mol(X=F)。亚甲基与毗邻氧原子的各C-H键插入反应没有势垒,与乙基中β-C-H键插入势垒仅3.4kJ/mol.甲乙醚中乙基α-C上的C-H键最有利于CX2的插入,甲基上的C-H键次之,乙基β-C上的又次之。  相似文献   

10.
合成了两种稀土高氯酸盐与L-脯氨酸配合物的晶体.经热重、差热、化学分析及对比有关文献,知其组成 是[Pr2(L-Pro)6(H2O)4](ClO4)6和[Er2(L-PrO)6(H2O)4](ClO4)6,质量分数为99.24%和98.20%.选用RE(NO3)· 6H2O(RE=Pr,Er)、LPro、NaClO4·H2O和 NaNO3作辅助物,使用具有恒温环境的反应热量计,以 2 mol·L-1HCl 作溶剂,分别测定了[2RE(NO3)3·6H2O+6L-PrO+6NaClO4·H2O]和{ [RE2(L-PrO)6(H2O)4](ClO4)6+6NaNO3}在 298.15 K时的溶解热.设计一热化学循环求得化学反应的反应焓rH分别是:63.904 kJ·mol-1和 91.017 kJ·mol-1,经计算得配合物[RE2(L-Pro)6(H2O)4](ClO4)6(s)在 298.15 K时的标准生成焓(298.15 K)分别 是-6 594.78 kJ·mol-1和-6 532.87 kJ·mol-1。  相似文献   

11.
Xia WS  Zhu RS  Lin MC  Mebel AM 《Faraday discussions》2001,(119):191-205; discussion 255-74
The potential energy surface (PES) of the CH3OH system has been characterized by ab initio molecular orbital theory calculations at the G2M level of theory. The mechanisms for the decomposition of CH3OH and the related bimolecular reactions, CH3 + OH and 1CH2 + H2O, have been elucidated. The rate constants for these processes have been calculated using variational RRKM theory and compared with available experimental data. The total decomposition rate constants of CH3OH at the high- and low-pressure limits can be represented by k infinity = 1.56 x 10(16) exp(-44,310/T) s-1 and kAr0 = 1.60 x 10(36) T-12.2 exp(-48,140/T) cm3 molecule-1 s-1, respectively, covering the temperature range 1000-3000 K, in reasonable agreement with the experimental values. Our results indicate that the product branching ratios are strongly pressure dependent, with the production of CH3 + OH and 1CH2 + H2O dominant under high (P > 10(3) Torr) and low (P < 1 atm) pressures, respectively. For the bimolecular reaction of CH3 and OH, the total rate constant and the yields of 1CH2 + H2O and H2 + HCOH at lower pressures (P < 5 Torr) could be reasonably accounted for by the theory. For the reaction of 1CH2 with H2O, both the yield of CH3 + OH and the total rate constant could also be satisfactorily predicted theoretically. The production of 3CH2 + H2O by the singlet to triplet surface crossing, predicted to occur at 4.3 kcal mol-1 above the H2C...OH2 van der Waals complex (which lies 82.7 kcal mol-1 above CH3OH), was neglected in our calculations.  相似文献   

12.
Fang DC  Harding LB  Klippenstein SJ  Miller JA 《Faraday discussions》2001,(119):207-22; discussion 255-74
A combination of high-level quantum-chemical simulations and sophisticated transition state theory analyses is employed in a study of the temperature dependence of the N2H + OH-->HNNOH recombination reaction. The implications for the branching between N2H + OH and N2 + H2O in the NH2 + NO reaction are also explored. The transition state partition function for the N2H + OH recombination reaction is evaluated with a direct implementation of variable reaction coordinate (VRC) transition state theory (TST). The orientation dependent interaction energies are directly determined at the CAS + 1 + 2/cc-pvdz level. Corrections for basis set limitations are obtained via calculations along the cis and trans minimum energy paths employing an approximately aug-pvtz basis set. The calculated rate constant for the N2H + OH-->HNNOH recombination is found to decrease significantly with increasing temperature, in agreement with the predictions of our earlier theoretical study. Conventional transition state theory analyses, employing new coupled cluster estimates for the vibrational frequencies and energies at the saddlepoints along the NH2 + NO reaction pathway, are coupled with the VRC-TST analyses for the N2H + OH channels to provide estimates for the branching in the NH2 + NO reaction. Modest variations in the exothermicity of the reaction (1-2 kcal mol-1), and in a few of the saddlepoint energies (2-4 kcal mol-1), yield TST based predictions for the branching fraction that are in satisfactory agreement with related experimental results. The unmodified results are in reasonable agreement for higher temperatures, but predict too low a branching ratio near room temperature, as well as too steep an initial rise.  相似文献   

13.
梁湦  何秋月  孙宝珍 《分子催化》2017,31(6):553-566
采用密度泛函理论结合周期平板模型方法系统地研究了水煤气变换反应在Cu_2O(111)表面上的反应机理,包括氧化还原机理、羧基机理和甲酸根机理.结果表明,在Cu_2O(111)表面,羧基机理和甲酸根机理均可行,且甲酸根机理更为有利,其最佳反应途径为H_2O~*→H~*+OH~*;CO(g)+H~*+OH~*→trans-HCOOH~*(1)→cis-HCOOH~*→CO_2~*+H_2(g).其中trans-HCOOH~*(1)→cis-HCOOH~*为其决速步,该基元反应的能垒仅为59 kJ·mol~(-1).羧基机理的最优反应路径同样是以H_2O的解离反应开始,随后CO(g)+OH~*→cis-COOH~*→trans-COOH~*→CO_2(g)+H~*,最后产生的两个吸附的H原子先迁移再结合生成H_2,整个反应的控速步骤为H原子的迁移,迁移能垒为96 kJ·mol~(-1).氧化还原机理则由于OH解离需要越过一个很高的能垒(254 vs.187 kJ·mol~(-1))而不可行.  相似文献   

14.
We report a detailed theoretical study of the hydrogen abstraction reaction from methanol by atomic hydrogen. The study includes the analysis of thermal rate constants, branching ratios, and kinetic isotope effects. Specifically, we have performed high-level computations at the MC3BB level together with direct dynamics calculations by canonical variational transition state theory (CVT) with the microcanonically optimized multidimensional tunneling (μOMT) transmission coefficient (CVT/μOMT) to study both the CH(3)OH+H→CH(2)OH+H(2) (R1) reaction and the CH(3)OH+H→CH(3)O+H(2) (R2) reaction. The CVT/μOMT calculations show that reaction R1 dominates in the whole range 298≤T (K)≤2500 and that anharmonic effects on the torsional mode about the C-O bond are important, mainly at high temperatures. The activation energy for the total reaction sum of R1 and R2 reactions changes substantially with temperature and, therefore, the use of straight-line Arrhenius plots is not valid. We recommend the use of new expressions for the total R1 + R2 reaction and for the R1 and R2 individual reactions.  相似文献   

15.
The potential energy surfaces (PES) for the reaction of the C(2)H radical with 1-butyne (C(4)H(6)) have been studied using the CBS-QB3 method. Density functional B3LYP/cc-pVTZ and M06-2X/6-311++G(d,p) calculations have also been performed to analyze the reaction energetics. For detailed theoretical calculation on the total reaction mechanism, the initial association reactions on more and less substituted C atoms of 1-butyne are treated separately followed by a variational transition state theory (VTST) calculation to obtain reaction rates. The successive unimolecular reactions from the association reaction complexes are subjected to Rice-Ramsperger-Kassel-Marcus (RRKM) calculations for reaction rate constants and product branching ratios. The calculated rate constants in the temperature range 70-295 K for both the association reactions are found to be highly temperature dependent at low temperatures, which is contrary to the experimental findings of temperature independent association rates. We have explained this observation with the help of variational nature of the transition states, and we found a "loose" transition state at low temperatures. The calculated product branching ratios for the unimolecular reactions generally agree with the available experimental data, although some channels show a significant method dependency and therefore the correlation with experiment is lost to some extent. Our detailed reaction energetics calculations confirm that the C(2)H + C(4)H(6) reaction proceeds without an entrance barrier and leads to the important products ethynylallene + CH(3), 1,3-hexadiyne + H, 3,4-hexadiene-1-yne + H, 2-ethynyl-1,3-butadiene + H, 3,4-dimethylenecyclobut-1-ene + H and fulvene + H exothermic by 25-75 kcal mol(-1), with strong dependence of the product distribution on the association mode of C(2)H with C(4)H(6), making these reactions fast under low temperature conditions of Titan's atmosphere. Therefore this study can provide a detailed picture of the complex hydrocarbon formation mechanism in the upper atmosphere.  相似文献   

16.
A detailed investigation of the dynamics of the reactions of ground- and excited-state carbon atoms, C(3P) and C(1D), with acetylene is reported over a wide collision energy range (3.6-49.1 kJ mol-1) using the crossed molecular beam (CMB) scattering technique with electron ionization mass spectrometric detection and time-of-flight (TOF) analysis. We have exploited the capability of (a) generating continuous intense supersonic beams of C(3P, 1D), (b) crossing the two reactant beams at different intersection angles (45, 90, and 135 degrees ) to attain a wide range of collision energies, and (c) tuning the energy of the ionizing electrons to low values (soft ionization) to suppress interferences from dissociative ionization processes. From angular and TOF distribution measurements of products at m/z=37 and 36, the primary reaction products of the C(3P) and C(1D) reactions with C2H2 have been identified to be cyclic (c)-C3H + H, linear (l)-C3H + H, and C3 + H2. From the data analysis, product angular and translational energy distributions in the center-of-mass (CM) system for both the linear and cyclic C3H isomers as well as the C3 product from C(3P) and for l/c-C3H and C3 from C(1D) have been derived as a function of collision energy from 3.6 to 49.1 kJ mol-1. The cyclic/linear C3H ratio and the C3/(C3 + c/l-C3H) branching ratios for the C(3P) reaction have been determined as a function of collision energy. The present findings have been compared with those from previous CMB studies using pulsed beams; here, a marked contrast is noted in the CM angular distributions for both C3H- and C3-forming channels from C(3P) and their trend with collision energy. Consequently, the interpretation of the reaction dynamics derived in the present work contradicts that previously proposed from the pulsed CMB studies. The results have been discussed in the light of the available theoretical information on the relevant triplet and singlet C3H2 ab initio potential energy surfaces (PESs). In particular, the branching ratios for the C(3P) + C2H2 reaction have been compared with the available theoretical predictions (approximate quantum scattering calculations and quasiclassical trajectory calculations on ab initio triplet PESs and, very recent, statistical calculations on ab initio triplet PESs as well as on ab initio triplet/singlet PESs including nonadiabatic effects, that is, intersystem crossing). While the experimental branching ratios have been corroborated by the statistical predictions, strong disagreement has been found with the results of the dynamical calculations. The astrophysical implications of the present results have been noted.  相似文献   

17.
The rate of the reaction 1, HCO+O2-->HO2+CO, has been determined (i) at room temperature using a slow flow reactor setup (20 mbarH2+HCO+CO, into additional HCO radicals. The rate constants of reaction 4 were determined from unperturbed photolysis experiments to be k4(295 K)=(3.6+/-0.3)x10(10) cm3 mol-1 s-1 and k4(769-1107 K)=5.4x10(13)exp(-18 kJ mol-1/RT) cm3 mol-1 s-1(Delta log k4=+/-0.12).  相似文献   

18.
The elementary vapor-phase reaction between Cl atoms and HCHO has been studied by ab initio methods. Calculations at the MP2, MP3, MP4(SDTQ), CCSD, CCSD(T), and MRD-CI levels of theory show that the reaction is characterized by a low electronic barrier; excluding the effects of spin-orbit splitting in Cl, our best estimate at the MRD-CI/aug-cc-pVTZ//RHF-RCCSD(T)/aug-cc-pVTZ level of theory predicts a Born-Oppenheimer barrier height of 0.7 kJ mol-1. The energies of the lowest six electronic states as resulting from MRD-CI calculations are presented at discrete points along the reaction path, and two avoided crossings are found in the transition state region. The spin-orbit splitting in Cl is also calculated along the reaction path; it is not negligible in the transition state region and is found to increase the barrier by only 1.4 kJ mol-1 at the RCCSD(T)/aug-cc-pVTZ transition state geometry. The minimum energy path of the reaction connects an energetically weakly stabilized adduct on the flat potential surface on the reactant side and an energetically strongly stabilized postreaction adduct. The reaction rate coefficient and the kinetic isotope effects were calculated using improved canonical variational theory with small curvature tunneling (ICVT/SCT), and the results were compared to experimental data. The experimental reaction rate coefficient is reproduced within its uncertainty limits by variational transition state theory with interpolated single-point energy corrections (ISPE) at the MP4(SDTQ) level of theory and by conventional transition state theory with interpolated optimized energies (IOE) at the MRD-CI//RCCSD(T) level of theory and interpolated optimized geometries at the RCCSD(T) level of theory on an MP2/aug-cc-pVTZ potential energy surface when employing scaled vibrational frequencies.  相似文献   

19.
朱维晃  吴丰昌  黄廷林 《色谱》2008,26(5):550-553
通过高效液相色谱法研究了3-(2-吡啶基)-5,6-二苯基-1,2,4-三嗪(PDT)和Fe(Ⅱ)的配合物[Fe(PDT)3]2+的面式和经式两种几何异构体之间的动力学平衡过程。结果表明:不同温度(30,35,40,45 ℃)下,两种几何异构体含量(x)之间的相互转变均符合动力学一级反应,其xeln[(xe-x0)/(xe-x)]值和反应时间t(min)之间的关系分别为:xeln[(xe-x0)/(xe-x)]=0.082t+0.729 (r2=0.9911,T=45 ℃),xeln[(xe-x0)/(xe-x)]=0.049t+0.598 (r2=0.9987,T=40 ℃),xeln[(xe-x0)/(xe-x)]=0.022t+0.586 (r2=0.9987,T=35 ℃),xeln[(xe-x0)/(xe-x)]=0.012t+0.591(r2=0.9988,T=30 ℃)。两种异构体之间的动力学相互转变过程中的活化焓(ΔH)、活化熵(ΔS)和活化能(ΔEa)分别为:ΔH=103.84 kJ·mol-1,ΔS=271.93 J·mol-1·K-1,ΔEa=86.74 kJ·mol-1 (面式异构体向经式异构体转变);ΔH=106.47 kJ·mol-1,ΔS=257.65 J·mol-1·K-1,ΔEa=94.43 kJ·mol-1 (经式异构体向面式异构体转变)。  相似文献   

20.
用密度泛函理论(DFT)B3LYP方法, 在6-311G基组下,计算研究了反应Cl+F2→ClF+F和对称反应F+ClF′→ClF+F′的机理。求得前者的过渡态为三角形,活化能为15.57 kJ*mol-1;后者的过渡态为线形和三角形,活化能分别为11.52和196.25 kJ*mol-1。结果均经过振动分析和IRC计算验证。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号