首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The paper considers the problem of optimum stratification on an auxiliary variablex when the units from the different strate are selected with probability proportional to the value of the auxiliary variable. Under a super-population set-up assuming the form, of the regression of the estimation variabley on the auxiliary variablex as also the form of the variance functionV(y/x), minimal equations giving optimum strata boundaries have been obtained for the Neyman allocation method. As the minimal equations cannot be solved easily, methods to find approximate solutions have been given. A numerical illustration has also been given to study the effect of optimum stratification.  相似文献   

2.
Summary The paper considers the problem of optimum stratification on an auxiliary variablex when the information on the auxiliary variablex is also used to estimate the population mean using ratio or regression methods of estimation. Assuming the form of the regression of the estimation variabley on the auxiliary variablex as also the form of the conditional variance function V(y/x), the problem of determining optimum strata boundaries (OSB) is shown to be a particular case of optimum stratification on the auxiliary variable for stratified simple random sampling estimate. A numerical investigation has also been made to study the amount of gain in efficiency that can be brough about by stratifying the population.  相似文献   

3.
In 1956 Whitham gave a nonlinear theory for computing the intensity of an acoustic pulse of an arbitrary shape. The theory has been used very successfully in computing the intensity of the sonic bang produced by a supersonic plane. [4.] derived an approximate quasi-linear equation for the propagation of a short wave in a compressible medium. These two methods are essentially nonlinear approximations of the perturbation equations of the system of gas-dynamic equations in the neighborhood of a bicharacteristic curve (or rays) for weak unsteady disturbances superimposed on a given steady solution. In this paper we have derived an approximate quasi-linear equation which is an approximation of perturbation equations in the neighborhood of a bicharacteristic curve for a weak pulse governed by a general system of first order quasi-linear partial differential equations in m + 1 independent variables (t, x1,…, xm) and derived Gubkin's result as a particular case when the system of equations consists of the equations of an unsteady motion of a compressible gas. We have also discussed the form of the approximate equation describing the waves propagating upsteam in an arbitrary multidimensional transonic flow.  相似文献   

4.
A best proximity point theorem explores the existence of an optimal approximate solution, known as a best proximity point, to the equations of the form Tx = x where T is a non-self mapping. The purpose of this article is to establish some best proximity point theorems for non-self non-expansive mappings, non-self Kannan- type mappings and non-self Chatterjea-type mappings, thereby producing optimal approximate solutions to some fixed point equations. Also, algorithms for determining such optimal approximate solutions are furnished in some cases.  相似文献   

5.
The evaluation of the accuracy of solutions of linear algebraic systems by numerical method is not easily accomplished on account of the finite precision of computer arithmetic.In this paper, we present a numerical method which determines for each variablex i , the numberC i of exact significant figures.  相似文献   

6.
Let S:AB and T:AB be given non-self mappings, where A and B are non-empty subsets of a metric space. As S and T are non-self mappings, the equations Sx=x and Tx=x do not necessarily have a common solution, called a common fixed point of the mappings S and T. Therefore, in such cases of non-existence of a common solution, it is attempted to find an element x that is closest to both Sx and Tx in some sense. Indeed, common best proximity point theorems explore the existence of such optimal solutions, known as common best proximity points, to the equations Sx=x and Tx=x when there is no common solution. It is remarked that the functions xd(x,Sx) and xd(x,Tx) gauge the error involved for an approximate solution of the equations Sx=x and Tx=x. In view of the fact that, for any element x in A, the distance between x and Sx, and the distance between x and Tx are at least the distance between the sets A and B, a common best proximity point theorem achieves global minimum of both functions xd(x,Sx) and xd(x,Tx) by stipulating a common approximate solution of the equations Sx=x and Tx=x to fulfill the condition that d(x,Sx)=d(x,Tx)=d(A,B). The purpose of this article is to elicit common best proximity point theorems for pairs of contractive non-self mappings and for pairs of contraction non-self mappings, yielding common optimal approximate solutions of certain fixed point equations. Besides establishing the existence of common best proximity points, iterative algorithms are also furnished to determine such optimal approximate solutions.  相似文献   

7.
In this paper,the Dirichlet problem of Stokes approximate of non-homogeneous incompressibleNavier-Stokes equations is studied.It is shown that there exist global weak solutions as well as global andunique strong solution for this problem,under the assumption that initial density ρ_0(x)is bounded away from0 and other appropriate assumptions(see Theorem 1 and Theorem 2).The semi-Galerkin method is applied toconstruct the approximate solutions and a prior estimates are made to elaborate upon the compactness of theapproximate solutions.  相似文献   

8.
We construct small solutions x(t) → 0 as t → 0 of nonlinear operator equations F(x(t), x(α(t)),t) = 0 with a functional perturbation α(t) of the argument. By the Newton diagram method, we reduce the problem to quasilinear operator equations with a functional perturbation of the argument. We show that the solutions of such equations can have not only algebraic but also logarithmic branching points and contain free parameters. The number of free parameters and the form of the solution depend on the properties of the Jordan structure of the operator coefficients of the equation.  相似文献   

9.
A new numerical-analytic algorithm for the investigation of periodic solutions of nonlinear periodic systems of differential equations dx/dt = A(t) x+ ƒ(t, x) in the critical case is developed. The problem of the existence of solutions and their approximate construction is studied. Estimates for the convergence of successive periodic approximations are obtained. __________ Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 58, No. 4, pp. 472–488, April, 2006.  相似文献   

10.
We consider three families of equations of the form y″ + (1 + φ(x))y = 0, where the coefficient φ(x) satisfies the condition lim x→+∞ φ(x) = 0. We obtain solutions of these equations in closed form. We show that the maximum absolute values of solutions grow at the rate of a logarithmic function, a power-law function, and even an exponential function as x → ∞.  相似文献   

11.
Summary Stochastic processes of the following type are considered. At random time points, the variablex(t) jumps fromy tox, say. The heightsx–y of the jumps have a given distributionG *(x–y) that may depend ony ort. Between the jumps,x(t) is a solution to a given differential equationdx/dt=x(x, t). We look for the distributionF(x, t) ofx at timet>0,F(x, 0) being given. In the stationary case, stable distributions are investigated.If there is a lower boundaryx 0 and ifF(x 0)>0, the problem is similar to the queueing problem. We solve it in the stationary case with integral equations of the Volterra type. Other problems can be transformed to differential equations for the moment generating functions. These equations are partial in the non stationary and ordinary in the stationary case.  相似文献   

12.
The aim of this work is to give theoretical justification of several types of finite element approximations to the initial-boundary value problems of first order linear hyperbolic equations. Our approximate scheme is obtained by the piecewise linear continuous finite element method for space variable, x, and the Euler type step by step integration method for time variable, t. An artificial viscosity technique, up-stream type methods are considered within the frame work of L2-theory. The convergence and the error estimate of the approximate solutions to the true one are discussed.  相似文献   

13.
The classical differential equations of Hermite, Legendre, and Chebyshev are well known for their polynomial solutions. These polynomials occur in the solutions to numerous problems in applied mathematics, physics, and engineering. However, since these equations are of second order, they also have second linearly independent solutions that are not polynomials. These solutions usually cannot be expressed in terms of elementary functions alone. In this paper, the classical differential equations of Hermite, Legendre, and Chebyshev are studied when they have a forcing term x M on the right-hand side. It will be shown that for each equation, choosing a certain initial condition is a necessary and sufficient condition for ensuring a polynomial solution. Once this initial condition is determined, the exact form of the polynomial solution is presented.  相似文献   

14.
Identifying sources of ground water pollution and deblurring astronomical galaxy images are two important applications generating growing interest in the numerical computation of parabolic equations backward in time. However, while backward uniqueness typically prevails in parabolic equations, the precise data needed for the existence of a particular backward solution is seldom available. This paper discusses previously unexplored non‐uniqueness issues, originating from trying to reconstruct a particular solution from imprecise data. Explicit 1D examples of linear and nonlinear parabolic equations are presented, in which there is strong computational evidence for the existence of distinct solutions wred(x,t) and wgreen(x,t), on 0 ≤ t ≤ 1. These solutions have the property that the traces wred(x,1) and wgreen(x,1) at time t = 1 are close enough to be visually indistinguishable, while the corresponding initial values wred(x,0) and wgreen(x,0) are vastly different, well‐behaved, physically plausible functions, with comparable L2 norms. This implies effective non‐uniqueness in the recovery of wred(x,0) from approximate data for wred(x,1). In all these examples, the Van Cittert iterative procedure is used as a tool to discover unsuspected, valid, additional solutions wgreen(x,0). This methodology can generate numerous other examples and indicates that multidimensional problems are likely to be a rich source of striking non‐uniqueness phenomena. Published 2012. This article is a US Government work and is in the public domain in the USA.  相似文献   

15.
Here we solve two problems presented in paper [9] (C C Tisdell and A Zaidi, Basic qualitative and quantitative results for solutions to nonlinear, dynamic equations on time scales with an application to economic modelling, Nonlinear Anal. 68 (2008) 3504–3524). We study existence and uniqueness of solutions for delay systems and first-order dynamic equations of the form x Δ = f (t,x,x σ ) on time scales by using the Banach’s fixed-point theorem. Some examples are presented to illustrate the efficiency of the proposed results.  相似文献   

16.
Given non-void subsets A and B of a metric space and a non-self mapping T:A? B{T:A\longrightarrow B}, the equation T x = x does not necessarily possess a solution. Eventually, it is speculated to find an optimal approximate solution. In other words, if T x = x has no solution, one seeks an element x at which d(x, T x), a gauge for the error involved for an approximate solution, attains its minimum. Indeed, a best proximity point theorem is concerned with the determination of an element x, called a best proximity point of the mapping T, for which d(x, T x) assumes the least possible value d(A, B). By virtue of the fact that d(x, T x) ≥ d(A, B) for all x in A, a best proximity point minimizes the real valued function x? d(x, T x){x\longrightarrow d(x, T\,x)} globally and absolutely, and therefore a best proximity in essence serves as an ideal optimal approximate solution of the equation T x = x. The aim of this article is to establish a best proximity point theorem for generalized contractions, thereby producing optimal approximate solutions of certain fixed point equations. In addition to exploring the existence of a best proximity point for generalized contractions, an iterative algorithm is also presented to determine such an optimal approximate solution. Further, the best proximity point theorem obtained in this paper generalizes the well-known Banach’s contraction principle.  相似文献   

17.
A new approach to group classification problems and more general investigations on transformational properties of classes of differential equations is proposed. It is based on mappings between classes of differential equations, generated by families of point transformations. A class of variable coefficient (1+1)-dimensional semilinear reaction–diffusion equations of the general form f(x)u t =(g(x)u x ) x +h(x)u m (m≠0,1) is studied from the symmetry point of view in the framework of the approach proposed. The singular subclass of the equations with m=2 is singled out. The group classifications of the entire class, the singular subclass and their images are performed with respect to both the corresponding (generalized extended) equivalence groups and all point transformations. The set of admissible transformations of the imaged class is exhaustively described in the general case m≠2. The procedure of classification of nonclassical symmetries, which involves mappings between classes of differential equations, is discussed. Wide families of new exact solutions are also constructed for equations from the classes under consideration by the classical method of Lie reductions and by generation of new solutions from known ones for other equations with point transformations of different kinds (such as additional equivalence transformations and mappings between classes of equations).  相似文献   

18.
The solvability of forward—backward stochastic differential equations (FBSDEs for short) has been studied extensively in recent years. To guarantee the existence and uniqueness of adapted solutions, many different conditions, some quite restrictive, have been imposed. In this paper we propose a new notion: the approximate solvability of FBSDEs, based on the method of optimal control introduced in our primary work [15]. The approximate solvability of a class of FBSDEs is shown under mild conditions; and a general scheme for constructing approximate adapted solutions is proposed. Accepted 17 April 2001. Online publication 14 August 2001.  相似文献   

19.
We establish global regularity for weak solutions to quasilinear divergence form elliptic and parabolic equations over Lipschitz domains with controlled growth conditions on low order terms. The leading coefficients belong to the class of BMO functions with small mean oscillations with respect to x.  相似文献   

20.
The structure of solutions of gasdynamic equations is investigated in the case of unsteady double waves in the neighborhood of the quiescent region. A general concept of double waves is presented in the form of special series with logarithmic terms. Results of numerical computations are given.The problem of determining the flow of plane and three-dimensional waves separated from the quiescent region by a weak discontinuity was considered in [1–3], where approximate solutions were derived for that neighborhood, and the formulation of boundary value problems required for solving the equation for the analog of the velocity potential in the hodograph plane was investigated.The more general problem (without the assumption of the degeneration of motion) of arbitrary potential flows of polytropic gas adjacent to the quiescent region and separated by a weak discontinuity was considerd in [4–8]. Solution of that problem was obtained in the form of special series in powers of the mo dulus of the velocity vector r in the space of the time hodograph. The value r = 0 corresponds to the surface of weak discontinuity that separates the perturbed motion region from that at rest. Some applications of derived solutions to problems such as the motion of a convex piston and the propagation of weak shock waves were also investigated in those papers. Convergence in the small of obtained series was proved in [9]. However the attempts of constructing series in powers of r, which were used in [4–8] for the presentation of equations of double waves in the neighborhood of the quiescent region, proved to be unsuccessful.Although parts of expansions in series in powers of r (accurate to within 0 (r2)), were constructed in [1–3], it was found that the coefficient at r8 in equations for double waves cannot be determined owing to the insolvability of its equation. This is related to the fact that the surface r = 0in the case of equations for double waves is simultaneously a line of parabolic degeneration and a characteristic.The object of the present note is the formulation of solutions of equations for plane unsteady double waves in the neighborhood of the quiescent region. Parts of the derived series, which generally are nonanalytic functions of r, can be used for defining flows at small r in particular those downstream of two-dimensional normal detonation waves [10] or in problems of angular pistons [11]. The method used for the derivation of series can be also applied in investigations of threedimensional self-similar flows with variables x1/x3 and x2/x3 (steady flows) or x1/t, x2/t and x3/t (unsteady flows). However it was not possible to obtain in such cases regular series in powers of r.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号