共查询到20条相似文献,搜索用时 0 毫秒
1.
基于耦合流体力学方程组,分别研究了各向同性和各向异性轴对称势阱下Bardeen-CooperSchrieffer–Bose-Einstein condensate(BCS-BEC)渡越过程中超流费米气体的Efimovian膨胀.当费米气体处于幺正极限,体系标度不变,气体膨胀尺寸展现出一系列平台结构,气体的演化由对数周期函数描述;当费米气体处于非幺正极限超流区域,体系标度不变性破缺,气体的演化偏离对数周期变化;另外我们还发现对于各向异性的费米气体,即使处于幺正极限,谐振子势的各向异性也会导致体系标度不变性破缺. 相似文献
2.
We consider the BCS-BEC (Bose-Einstein-condensate) crossover for a system of trapped Fermi atoms at finite temperature, both below and above the superfluid critical temperature, by including fluctuations beyond mean field. We determine the superfluid critical temperature and the pair-breaking temperature as functions of the attractive interaction between Fermi atoms, from the weak- to the strong-coupling limit (where bosonic molecules form as bound-fermion pairs). Density profiles in the trap are also obtained for all temperatures and couplings. 相似文献
3.
Evolution of the vortex state in the BCS-BEC crossover of a quasi two-dimensional superfluid Fermi gas 下载免费PDF全文
We use the path-integral formalism to investigate the vortex properties of a quasi-two dimensional(2D) Fermi superfluid system trapped in an optical lattice potential.Within the framework of mean-field theory,the cooper pair density,the atom number density,and the vortex core size are calculated from weakly interacting BCS regime to strongly coupled while weakly interacting BEC regime.Numerical results show that the atoms gradually penetrate into the vortex core as the system evolves from BEC to BCS regime.Meanwhile,the presence of the optical lattice allows us to analyze the vortex properties in the crossover from three-dimensional(3D) to 2D case.Furthermore,using a simple re-normalization procedure,we find that the two-body bound state exists only when the interaction is stronger than a critical one denoted by G_c which is obtained as a function of the lattice potential's parameter.Finally,we investigate the vortex core size and find that it grows with increasing interaction strength.In particular,by analyzing the behavior of the vortex core size in both BCS and BEC regimes,we find that the vortex core size behaves quite differently for positive and negative chemical potentials. 相似文献
4.
We investigate the crossover from Bardeen-Cooper-Schrieffer (BCS) superfluidity to Bose-Einstein condensation (BEC) in a two-dimensional Fermi gas at T=0 using the fixed-node diffusion Monte?Carlo method. We calculate the equation of state and the gap parameter as a function of the interaction strength, observing large deviations compared to mean-field predictions. In the BEC regime our results show the important role of dimer-dimer and atom-dimer interaction effects that are completely neglected in the mean-field picture. Results on Tan's contact parameter associated with short-range physics are also reported along the BCS-BEC crossover. 相似文献
5.
We calculate the equation of state of a two-component Fermi gas with attractive short-range interspecies interactions using the fixed-node diffusion Monte Carlo method. The interaction strength is varied over a wide range by tuning the value a of the s-wave scattering length of the two-body potential. For a>0 and a smaller than the inverse Fermi wave vector our results show a molecular regime with repulsive interactions well described by the dimer-dimer scattering length a(m)=0.6a. The pair correlation functions of parallel and opposite spins are also discussed as a function of the interaction strength. 相似文献
6.
We study the short-time dynamics of a degenerate Fermi gas positioned near a Feshbach resonance following an abrupt jump in the atomic interaction resulting from a change of magnetic field. We investigate the dynamics of the condensate order parameter and pair wave function for a range of field strengths. When the jump is sufficient to span the BCS to Bose-Einstein condensation crossover, we show that the rigidity of the momentum distribution precludes any atom-molecule oscillations in the entrance channel dominated resonances observed in 40K and 6Li. Focusing on material parameters tailored to the 40K Feshbach resonance at 202.1 G, we comment on the integrity of the fast sweep projection technique as a vehicle to explore the condensed phase in the crossover region. 相似文献
7.
We develop a time-dependent mean-field theory to investigate the released momentum distribution and the released energy of an ultracold Fermi gas in the BCS-BEC crossover after the scattering length has been set to zero by a fast magnetic-field ramp. For a homogeneous gas we analyze the nonequilibrium dynamics of the system as a function of the interaction strength and of the ramp speed. For a trapped gas the theoretical predictions are compared with experimental results. 相似文献
8.
We observe dramatic changes in the atomic momentum distribution of a Fermi gas in the crossover region between the BCS theory superconductivity and Bose-Einstein condensation (BEC) of molecules. We study the shape of the momentum distribution and the kinetic energy as a function of interaction strength. The momentum distributions are compared to a mean-field crossover theory, and the kinetic energy is compared to theories for the two weakly interacting limits. This measurement provides a unique probe of pairing in a strongly interacting Fermi gas. 相似文献
9.
We present a measurement of the potential energy of an ultracold trapped gas of 40K atoms in the BCS-BEC crossover and investigate the temperature dependence of this energy at a wide Feshbach resonance, where the gas is in the unitarity limit. In particular, we study the ratio of the potential energy in the region of the unitarity limit to that of a noninteracting gas, and in the T=0 limit we extract the universal many-body parameter beta. We find beta=-0.54_{-0.12};{+0.05}; this value is consistent with previous measurements using 6Li atoms and also with recent theory and Monte Carlo calculations. This result demonstrates the universality of ultracold Fermi gases in the strongly interacting regime. 相似文献
10.
We discuss the BCS-BEC crossover in a degenerate Fermi gas of two hyperfine states interacting close to a Feshbach resonance. We show that, by including fluctuation contributions to the free energy similar to that considered by Nozières and Schmitt-Rink, the character of the superfluid phase transition continuously changes from the BCS-type to the BEC-type, as the threshold of the quasimolecular band is lowered. In the BEC regime, the superfluid phase transition is interpreted in terms of molecules associated with both the Feshbach resonance and Cooper pairing. 相似文献
11.
Ohashi Y 《Physical review letters》2005,94(5):050403
We investigate unconventional superfluidity in a gas of Fermi atoms with an anisotropic p-wave Feshbach resonance. Including the p-wave Feshbach resonance as well as the associated three kinds of quasimolecules with finite orbital angular momenta Lz=+/-1,0, we calculate the transition temperature of the superfluid phase. As one passes through the p-wave Feshbach resonance, we find the usual BCS-BEC crossover phenomenon. The p-wave BCS state continuously changes into the BEC of bound molecules with L=1. Our calculation includes the effect of fluctuations associated with Cooper pairs and molecules which are not Bose condensed. 相似文献
12.
In order to clarify the structure of a singly quantized vortex in a superfluid fermion gas near the Feshbach resonance, we numerically solve the generalized Bogoliubov-de Gennes equation in the boson-fermion model. The superfluid gap, which contains contributions from both condensed fermion pairs and condensed bosons, is self-consistently determined, and the quasiparticle excitation levels bound in the vortex core are explicitly shown. We find that the boson condensate contributes to enhance the matter density depletion and the discreteness of localized quasiparticle spectrum inside the core. It is predicted that the matter density depletion and the discrete core levels are detectable in the vicinity of the BCS-Bose-Einstein condensation crossover point. 相似文献
13.
We evaluate the frequencies of collective modes and the anisotropic expansion rate of a harmonically trapped Fermi superfluid at varying coupling strengths across a Feshbach resonance driving a BCS-BEC crossover. The equations of motion for the superfluid are obtained from a microscopic mean-field expression for the compressibility and are solved within a scaling ansatz. Our results confirm nonmonotonic behavior in the crossover region and are in quantitative agreement with current measurements of the transverse breathing mode by Kinast et al. [Phys. Rev. Lett. 92, 150402 (2004)]] and of the axial breathing mode by Bartenstein et al. [Phys. Rev. Lett. 92, 203201 (2004)]]. 相似文献
14.
T. L. Song Y. L. Ma 《The European Physical Journal B - Condensed Matter and Complex Systems》2011,82(3-4):303-311
The ground state of a three-dimensional (3D) rotating trapped superfluid Fermi gas in the BCS-BEC crossover is mapped to finite N v -body vortex states by a simple ansatz. The total vortex energy is measured from the ground-state energy of the system in the absence of the vortices. The vortex state is stable since the vortex potential and rotation energies are attractive while the vortex kinetic energy and interaction between vortices are repulsive. By combining the analytical and numerical works for the minimal vortex energy, the 2D configurations of N v vortices are studied by taking into account of the finite size effects both on xy-plane and on z-direction. The calculated vortex numbers as a function of the interaction strength are appropriate to the renew experimental results by Zwierlein in [High-temperature superfluidity in a ultracold Fermi gas, Ph.D. thesis, Massachusetts Institute of Technology, 2006]. The numerical results show that there exist two types of vortex structures: the trap center is occupied and unoccupied by a vortex, even in the case of N v < 10 with regular polygon and in the case of N v ≥ 10 with finite triangle lattice. The rotation frequency dependent vortex numbers with different interaction strengths are also discussed. 相似文献
15.
16.
A systematic study of the Hugoniot equation of state, phase transition, and the other thermodynamic properties including the Hugoniot temperature, the electronic and ionic heat capacities, and the Gruneisen parameter for shockcompressed BeO, has been carried out by calculating the total free energy. The method of calculations combines first-principles treatment for 0 K and finite-T electronic contribution and the mean-field-potential approach for the vibrational contribution of the lattice ion to the total energy. Our calculated Hugoniot is in good agreement with the experimental data. 相似文献
17.
18.
We present and test an expansion method for calculating the distribution function of mobile electrons in semiconductors in a drifting homogeneous electric field. This expansion represents an extension of the drifted Maxwellian method and correctly reproduces the exact Monte Carlo distribution function even in high fields. 相似文献
19.
The 2D resonant Fermi gas with p-wave pairing is considered n the BCS-BEC regime. For the 2D analog of the superfluid A1 phase, the Leggett equations [1] for superfluid gap Δ and chemical potential μ are analytically solved at T = 0 and the spectrum of the collective excitations (acoustic waves) is analyzed in the BCS regime (μ > 0), where the triplet Cooper pairs emerge; in the BEC regime (μ < 0), where the triplet local pairs (molecules) emerge; and in the transition region, where μ → 0. At low temperatures, the contribution of the superfluid Fermi quasiparticles of the resonant gas to heat capacity C v and the density of normal component ρn is also calculated. At μ = 0, the fermionic contribution to ρn and C v are represented as power functions of temperature (ρn ~ T 3 and C v ~ T 2). However, similar power contributions to these quantities are related to phonons (bosonic acoustic oscillations). The possibility of the experimental observation of the nontrivial topological term with the charge Q = 1 in the BCS regime of the 2D A1 phase is briefly discussed. 相似文献
20.
The quantum pressure correction to the excitation spectrum of the trapped superfluid Fermi gases in a BEC-BCS crossover 下载免费PDF全文
Using quantum hydrodynamic approaches, we study the quantum pressure
correction to the collective excitation spectrum of the interacting
trapped superfluid Fermi gases in the BEC-BCS crossover. Based on a
phenomenological equation of state, we derive hydrodynamic equations
of the system in the whole BEC-BCS crossover regime. Beyond the
Thomas--Fermi approximation, expressions of the frequency
corrections of collective modes for both spherical and axial
symmetric traps excited in the BEC-BCS crossover are given
explicitly. The corrections of the eigenfrequencies due to the
quantum pressure and their dependence on the inverse interaction
strength, anisotropic parameter and particle numbers of the
condensate are discussed in detail. 相似文献