首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Efforts were made to assess the efficiency of an anaerobic filter packed with porous floating ceramic media and to identify the optimum operational condition of anaerobic filter as a pretreatment of swine wastewater for the subsequent biological removal of nitrogen and phosphorus. A stepwise decrease in hydraulic retention time (HRT) and an increase in organic loading rate (OLR) were utilized in an anaerobic filter reactor at mesophilic temperature (35°C). The optimum operating condition of the anaerobic filter was found to be at an HRT of 1 d. A soluble chemical oxygen demand (COD) removal efficiency of 62% and a total suspended solids removal efficiency of 39% at an HRT of 1 d were achieved with an OLR of 16.0 kg total COD/(m3·d), respectively. The maximum methane production rate approached 1.70 vol of biogas produced per volume of reactor per day at an HRT of 1 d. It was likely that the effluent COD/total Kjeldahl nitrogen ratio, of 22, the COD/total phosphorous ratio of 47, and the high effluent alkalinity >2500 mg/L as CaCO3 of the anaerobic filter operated at an HRT of 1 d was adequate for the subsequent biological removal of nitrogen and phosphorus.  相似文献   

2.
Different mixtures of animal byproducts, other slaughterhouse waste (i.e., rumen, stomach and intestinal content), food waste, and liquid manure were codigested at mesophilic conditions (37°C) at laboratory and pilot scale. Animal byproducts, including blood, represent 70–80% of the total biogas potential from waste generated during slaughter of animals. The total biogas potential from waste generated during slaughter is about 1300 MJ/cattle and about 140 MI/pig. Fed-batch digestion of pasteurized (70°C, 1h) animal byproducts resulted in a fourfold increase in biogas yield (1.14L/g of volatile solids [VS]) compared with nonpasteurized animal bypproducts (0.31L/g of VS). Mixtures with animal byproducts representing 19–38% of the total dry matter were digested in continuous-flow stirred tank reactors at laboratory and pilot scale. Stable processes at organic loading rates (OLRs) exceeding 2.5g of VS/(L·d) and hydraulic retention times (HRTs) less than 40 d could be obtained with total ammonia nitrogen concentrations (NH4−N+NH3−N) in the range of 4.0–5.0 g/L. After operating one process for more than 1.5 yr at total ammonia nitrogen concentrations >4 g/L, an increase in OLR to 5 g of VS/(L·d) and a decrease in HRT to 22 d was possible without accumulation of volatile fatty acids.  相似文献   

3.
厌氧悬浮填料生物膜反应器处理费托合成废水   总被引:4,自引:0,他引:4  
采用厌氧悬浮填料生物膜反应器工艺对费托合成废水进行处理,考察了高有机负荷条件下系统的运行情况.有机负荷小于31.1g/(L·d)时,COD去除率达97%以上;当有机负荷从39.7g/(L·d)增加至56.3g/(L·d)时,厌氧反应对COD的去除率从88%降至6l%.实验结果表明,填料生物膜比悬浮污泥具有更高的活性,M...  相似文献   

4.
A combined biologic and chemical treatment of high-strength (total chemical oxygen demand [CODtot] up to 20 g/L), strong nitrogenous (total N up to 1 g/L), and phosphoric (total P up to 0.4 g/L) starch industry wastewater was investigated at laboratory-scale level. As a principal step for COD elimination, upflow anaerobic sludge bed reactor performance was investigated at 30 degrees C. Under hydraulic retention times (HRTs) of about 1 d, when the organic loading rates were higher than 15 g of COD/(L.d), the CODtot removal varied between 77 and 93%, giving effluents with a COD/N ratio of 4-5:1, approaching the requirements of subsequent denitrification. The activated sludge reactor operating in aerobic-anoxic regime (HRT of about 4 d, duration of aerobic and anoxic phases of 30 min each) was able to remove up to 90% of total nitrogen and up to 64% of COD tot from the anaerobic effluents under 17-20 degrees C. The coagulation experiments with Fe(III) showed that 1.4 mg of resting hardly biodegradable COD and 0.5 mg of phosphate (as P) could be removed from the aerobic effluents by each milligram of iron added.  相似文献   

5.
The operating performance of a single and two (in series) laboratory upflow anaerobic sludge-bed (UASB) reactors (2.7-L working volume, recycle ratio varied from 1:1 to 1:18) treating diluted wine vinasse was investigated under psychrophilic conditions (4-10 degreesC). For a single UASB reactor seeded with granular sludge, the average organic loading rates (OLRs) applied were 4.7, 3.7, and 1.7 g of chemical oxygen demand (COD)/(L.d) (hydraulic retention times [HRTs] were about 1 d) at 9-11, 6 to 7, and 4 to 5 degreesC, respectively. The average total COD removal for preacidified vinasse wastewater was about 60% for all the temperature regimes tested. For two UASB reactors in series, the average total COD removal for treatment of non-preacidified wastewater exceeded 70% (the average OLRs for a whole system were 2.2, 1.8, and 1.3 g of COD/[L.d] under HRTs of 2 d at 10, 7, and 4 degreesC, respectively). In situ determinations of kinetic sludge characteristics (apparent Vm and Km) revealed the existence of substantial mass transfer limitations for the soluble substrates inside the reactor sludge bed. Therefore, application of higher recycle ratios is essential for enhancement of UASB pretreatment under psychrophilic conditions. The produced anaerobic effluents were shown to be efficiently posttreated aerobically: final effluent COD concentrations were about 0.1 g/L. Successful operation of the UASB reactors at quite low temperatures (4-10 degreesC) opens some perspectives for application of high-rate anaerobic pretreatment at ambient temperatures.  相似文献   

6.
Anaerobic treatment of low-strength brewery wastewater, with influent total chemical oxygen demand (COD) (CODin) concentrations ranging from 550 to 825 mg/L, was investigated in a pilot-scale 225.5-L expanded granular sludge bed (EGSB) reactor. In an experiment in which the temperature was lowered stepwise from 30 to 12 degrees C, the COD removal efficiency decreased from 73 to 35%, at organic loading rates (OLR) of 11-16.5 g COD/L/d. The applied hydraulic retention time (HRT) and liquid upflow velocity (Vup) were 1.2 h and 5.8 m/h, respectively. Under these conditions, the acidified fraction of the CODin varied from 45 to 90%. In addition to the expected drop in reactor performance, problems with sludge retention were also observed. In a subsequent experiment set at 20 degrees C, COD removal efficiencies exceeding 80% were obtained at an OLR up to 12.6 g COD/L/d, with CODin between 630 and 715 mg/L. The values of HRT and Vup applied were 2.1-1.2 h, and 4.4-7.2 m/h, respectively. The acidified fraction of the CODin was above 90%, but sludge washout was not significant. These results indicate that the EGSB potentials can be further explored for the anaerobic treatment of low-strength brewery wastewater, even at lower temperatures.  相似文献   

7.
This article summarizes the results obtained during the laboratory and pilot development of integrated biologic and physicochemical treatment and reuse of diluted pig manure streams. The application of a straw filter was an effective means to separate the solid and liquid fractions of raw wastewater and resulted in the removal of a significant part of the dry matter, total nitrogen, and phosphorus (65, 27, and 32%, respectively). From the filtrate generated, 60–80% of the total chemical oxygen demand (COD) was removed in an upflow anaerobic sludge bed reactor operating at 15–30°C. Ammonia was efficiently eliminated (>99%) from the anaerobic effluents using Ural laumantite as an ion exchanger. However, the nitrogen-content of the zeolite was too low to consider this method of ammonia removal economically feasible. The phosphate precipitation block, consisting of stripper of CO2 and fluidized-bed crystallizator, was able to decrease the concentration of soluble phosphate in the anaerobic effluents up to 7–15 mg of phosphate/L. The application of aerobic/anoxic biofilter as a sole polishing step was acceptable from an aesthetic point of view (the effluents were transparent and almost colorless and odorless) and elimination of biochemical oxygen demand (the resting COD was hardly biodegradable). However, the effluent nutrient concentrations (especially nitrogen) were far from the current standards for direct discharge of treated wastewater. We discuss the approaches for further improvement of effluent quality. Finally, we provide an outline of a full-scale system that partially implements the laboratory- and pilot-scale results obtained.  相似文献   

8.
The anaerobic treatment of soft drink wastewater (SDW) was studied in two laboratory reactors—a 1.8-L UASB reactor and a 3-L hybrid reactor-sludge bed containing a layer of polyurethane in the upper part, at 35°C. The highest organic loading rates (OLR) achieved were 13 and 16.5 g COD/L · D for hybrid and UASB reactors, respectively, with the treatment efficiency of about 80% for both reactors. Despite the higher treatment productivity achieved for the UASB reactor, its lower ability to generate a sufficient level of alkalinity led to difficulties in maintaining a stable operation performance. Therefore, the hybrid reactor seems to be indicated for OLR higher than 10 g COD/L · d and HRT lower than 1 D, from the point of view of reliability of these two systems. Both reactors can treat the SDW with pH influent up to 11.0. The feeding of reactors with higher pH influent values led to their quick failure because of alkali shock. The duration of the recovery period after alkali shock was about 1.5-2 mo.  相似文献   

9.
The performance of a 20-L anaerobic biofilter treating 2-ethyl-hexanoic acid (2-EHA) operating with the effluent recirculated was compared with that of the same biofilter operated without any recirculation. The recirculation of effluent was at a rate of 60 L/h through the biofilter. Tracer experiments were carried out to study the hydrodynamics in the biofilter under different modes of operation. The dispersion number (D/UL) obtained from these tracer experiments for the biofilter operated with and without effluent recirculation were 0.65 and 0.06, respectively. These values show that the recirculation was effective in achieving a mixed-flow pattern in the biofilter, whereas the biofilter operated without recirculation was essentially a plug-flow column with a moderate level of axial dispersion. The feed consisted of 2-EHA at a concentration of 8200 mg/L, which is equivalent to a COD of 20,000 mg/L. The optimal performance of the mixed-flow biofilter was at a hydraulic retention time (HRT) of 1.1 d, with a COD removal efficiency of 92.8% and a biogas production rate of 6.44 L/L biofilter vol/d. The biofilter failed at 0.83 d HRT, as a result of washout of biomass at this high hydraulic loading rate. By comparison, the optimal performance achieved for the plug-flow system was at 2 d HRT. The COD removal efficiency was 74.1%, and biogas production rate was 2.13 L/L biofilter vol/d. When the HRT was lowered to 1.5 d, failure occurred owing to inhibition as indicated by the low methane yield of 0.192 L/g COD removed. The superior performance of the mixed-flow mode can be attributed to the presence of the recycle stream, which diluted and evenly distributed the feed.  相似文献   

10.
Korean food waste was treated with a single-stage anaerobic codigester (SSAD) using waste activated sludge (WAS) generated from a municipal wastewater treatment plant. The stability and performance of the system was analyzed. The C/N ratio was improved with increasing food waste fraction of feed mixture. The pH, alkalinity, and free ammonia nitrogen concentration were the parameters used to evaluate the digester’s stability. The experimentally determined values of the parameters indicated that there were no methane inhibitions in the digester. Digester performance was determined by measuring the total chemical oxygen demand TCOD), volate solids (VS) removal, methane content in biogas, methane production rate (MPR), and specific methane productivity. Methane content in biogas and MPR were significantly dependent on hydraulic retention time (HRT) and ratio of food waste to WAS. The methane content in biogas decreased at shorter HRT or higher organic loading rate (OLR) with increased food waste fraction. Concerning the performance of the codigester, the optimum operating condition of the SSAD was found to be at an HRT of 10 d with a feed mixture ratio of 50% food waste and 50% WAS. A TCOD removal efficiency of 53.6% and a VS removal efficiency of 53.7% were obtained at an OLR of 5.96 kg of TCOD/(m3·d) and 3.14 kg of VS/(m3·d), respectively. A maximum MPR of 1.15 m3 CH4/(m3·d) and an SMP of 0.37 m3 CH4/kg of VSfeed were obtained at an HRT of 10 d with a methane content of 63%.  相似文献   

11.
Novel, laboratory-scale, high-solids reactors operated under mesophilic conditions were used to study the anaerobic fermentation of processed municipal solid waste (MSW) to methane. Product gas rate data were determined for organic loading rates ranging from 2.99–18.46 g of volatile solids (VS) per liter (L) per day (d). The data represent the anaerobic fermentation at high-solids levels within the reactor of 21–32%, while feeding a refuse-derived fuel (RDF)/MSW feedstock supplemented with a vitamin/mineral/nutrient solution. The average biogas yield was 0.59 L biogas/g VS added to the reactor system/d. The average methane composition of the biogas produced was 57.2%. The data indicate a linear relationship of increasing total biogas production with increasing organic loading rate to the process. The maximum organic loading rate obtainable with high-solids anaerobic digestion is in the range of 18–20 g VS/L·d to obtain 80% or greater bioconversion for the RDF/MSW feedstock. This loading rate is approximately four to six times greater than that which can be obtained with comparable low-solids anaerobic bioreactor technology.  相似文献   

12.
Multi-phase anaerobic reactor for H2 and CH4 production from paperboard mill wastewater was studied. The reactor was operated at hydraulic retention times (HRTs) of 12, 18, 24, and 36 h, and organic loading rates (OLRs) of 2.2, 1.5, 1.1, and 0.75 kg chemical oxygen demand (COD)/m3 day, respectively. HRT of 12 h and OLR of 2.2 kg COD/m3 day provided maximum hydrogen yield of 42.76?±?14.5 ml/g CODremoved and volumetric substrate uptake rate (?rS) of 16.51?±?4.43 mg COD/L h. This corresponded to the highest soluble COD/total COD (SCOD/TCOD) ratio of 56.25?±?3.3 % and the maximum volatile fatty acid (VFA) yield (YVFA) of 0.21?±?0.03 g VFA/g COD, confirming that H2 was mainly produced through SCOD conversion. The highest methane yield (18.78?±?3.8 ml/g CODremoved) and ?rS of 21.74?±?1.34 mgCOD/L h were achieved at an HRT of 36 h and OLR of 0.75 kg COD/m3 day. The maximum hydrogen production rate (HPR) and methane production rate (MPR) were achieved at carbon to nitrogen (C/N) ratio of 47.9 and 14.3, respectively. This implies the important effect of C/N ratio on the distinction between the dominant microorganism bioactivities responsible for H2 and CH4 production.  相似文献   

13.
The performance of an anaerobic sequencing batch reactor (ASBR) was assessed when submitted to increasing organic load with different influent concentrations and cycle lengths. The 5-L mechanically stirred (75 rpm) ASBR contained 2 L of granular biomass and treated 2 L of synthetic wastewater per cycle. Volumetric organic loads (VOLs) from 0.66 to 2.88 g of chemical oxygen demand (COD)/(L x d) were applied by using influent concentrations from 550 to 3,600 mg of COD/L in 8- and 12-h cycles. Reactor stability was maintained for VOLs from 0.66 to 2.36 g of COD/(L x d), with organic matter removal efficiencies for filtered samples (epsilonF) between 84 and 88%. For VOLs from 0.78 to 2.36 g of COD/(L x d) at an influent concentration of 2,000 mg of COD/L, when cycle length was reduced from 12 to 8 h, epsilonF did not vary, yet showed a very distinct behavior from the other conditions. In addition, two operation strategies were studied for VOLs with approximately similar values of 2.36 and 2.08 g of COD/(L x d). One involved operation with an influent concentration of 2,000 mg of COD/L and an 8-h cycle, whereas the other involved an influent concentration of 2,600 mg of COD/L and a 12-h cycle. Only the former resulted in system stability and efficiency. These results indicate that besides organic load, influent concentration and cycle length play a significant role in ASBR systems.  相似文献   

14.
Countercurrent fermentation of rice straw and chicken manure to carboxylic acids was performed using a mixed culture of marine mesophilic microorganisms. To increase the digestibility of the biomass, rice straw, and chicken manure were pretreated with 0.1 g Ca(OH)2/g biomass. Fermentation was performed for 80% rice straw and 20% chicken manure at various volatile solid loading rates (VSLR) and liquid residence times (LRT). The highest acid productivity of 1.69 g/(L·d) occurred at a total acid concentration of 32.4 g/L. The highest conversion (0.69 g VS digested/g VS fed) and yield (0.29 g total acids/g VS fed) were at a total acid concentration of 25 g/L. A Continuum Particle Distribution Model of the process predicted the experimental total acid concentration and conversion results with an average error of 6.41% and 6.15%, respectively. Results show how total acid concentrations, conversions, and yields vary with VSLR and LRT in the MixAlco process.  相似文献   

15.
Electron beam pretreatment of sewage sludge before anaerobic digestion   总被引:7,自引:0,他引:7  
The pretreatment of waste-activated sludge (WAS) by electron beam irradiation was studied in order to improve anaerobic sludge digestion. The irradiation dose of the electron beam was varied from 0.5 to 10 kGy. Batch and continuous-flow stirred tank reactors (CFSTRs) were operated to evaluate the effect of the electron beam pretreatment on anaerobic sludge digestion. Approximately 30–52% of the total chemical oxygen demand (COD) content of the WAS was solubilized within 24 h after electron beam irradiation. A large quantity of soluble COD, protein, and carbohydrates leached out from cell ruptures caused by the electron beam irradiation. Volatile fatty acids production from the irradiated sludge was approx 90% higher than that of the unirradiated sludge. The degradation of irradiated sewage sludge was described by two distinct first-order decay rates (k 1 and k 2). Most initial decay reaction accelerated within 10 d, with an average k 1 of 0.06/d for sewage sludge irradiated at all dosages. The mean values for the long-term batch first-order decay coefficient (k 2) were 0.025/d for irradiated sewage sludge and 0.007/d for unirradiated sludge. Volatile solids removal efficiency of the control reactor fed with unirradiated sewage sludge at a hydraulic retention time (HRT) of 20 d was almost the same as that of the CFSTRs fed with irradiated sludge at an HRT of 10 d. Therefore, disintegration of sewage sludge cells using electron beam pretreatment could reduce the reactor solid retention time by half.  相似文献   

16.
Sanitary landfill leachates are a major environmental problem in South American countries where sanitary landfills are still constructed and appropriate designs for the treatment of these leachates remain problematic. The performance of a lab-scale Gradual Concentric Chamber (GCC) reactor for leachates treatment is presented in this study. Two types of sanitary landfill residuals were evaluated, one directly collected from the garbage trucks (JGL), with high organic strength (84 g COD/l) and the second one, a 6-month-generated leachate (YL) collected from the lagoon of the sanitary landfill in Quito, Ecuador, with an organic strength of 66 g COD/l. Different operational parameters, such as organic loading rate (OLR), temperature, recycling and aeration, were tested. The GCC reactor was found to be a robust technology to treat these high-strength streams with organic matter removal efficiencies higher than 65%. The best performance of the reactors (COD removal efficiencies of 75–80%) was obtained at a Hydraulic Retention Time (HRT) of around 20 h and at 35 °C, with an applied OLR up to 70 and 100 g COD/l per day. Overall, the GCC reactor concept appears worth to be further developed for the treatment of leachates in low-income countries.  相似文献   

17.
The effect of temperature on the performance of an anaerobic sequencing biofilm batch reactor (ASBBR) with liquid-phase recirculation was assessed. Assays were performed using a recirculation velocity of 0.20 cm/s, 8-h cycles, and an average treated synthetic wastewater volume of 2 L/cycle with a concentration of 500 mg of Chemical Oxygen Demand (COD)/L. Operation temperatures were 15, 20, 25, 30, and 35°C. At 25, 30, and 35°C, organic matter removal efficiencies for filtered samples ranged from 81 to 83%. At lower temperatures, namely 15 and 20°C, removal efficiency decreased significantly to 61 and 65%, respectively. A first-order model could be fitted to the experimental concentration profile values. The first-order kinetic parameter value of this model varied from 0.46 to 0.81 h1 considering the lowest and highest temperature studied. Moreover, analysis of the removal profile values allowed fitting of an Arrhenius-type equation with an activation energy of 5715 cal/mol.  相似文献   

18.
垃圾渗沥液中难降解有机污染物的Fenton混凝处理   总被引:10,自引:0,他引:10  
王鹏 《应用化学》2001,18(5):408-0
垃圾渗沥水;上流式厌氧污泥床;废水处理;垃圾渗沥液中难降解有机污染物的Fenton混凝处理  相似文献   

19.
We developed a process for production of methane at a pilot scale. This process consists of three stages. The first stage is a semianaerobic hydrolysis/acidogenic step in which organic wastes are converted to various sugars, amino acids, and volatile fatty acids (VFAs). Operation temperature and pH were 45°C, and 5.0–5.5, respectively. Hydraulic retention time (HRT) was 2 d. To remove the putrid odor and to enhance the hydrolysis of organic wastes, a mixture of bacteria isolated from landfill soil was inoculated into the reactor. Total chemical oxygen demand (tCOD) and biological oxygen demand (BOD) were 36,000 mg/L and 40,000 mg/L, respectively. The second stage was an anaerobic acidogenic process, which can produce large amount of VFAs including acetate, propionate, butyrate, valerate, and caproate. Operation temperature and pH were 35°C, and 5.0–5.5, respectively. HRT was 2 d. The third stage was a strictly anaerobic methane fermentation step producing methane and carbon dioxide from VFAs. The working volume of upflow anaerobic sludge blanket (UASB) type reactor was 1200 L, and operation temperature and pH were 41°C, and 7.7–7.9, respectively. HRT was 12 d. Seventy two percent of methane at maximum was generated and the yield was 0.45–0.50 m3/kg VS of food wastes. Through the process, 88% of tCOD and 95% of BOD were removed. The wastewater was treated with the biological aerobic and anaerobic filters immobilized with heterotrophic and autotrophic nitrifying and denitrifying bacteria. Ninety percent of total nitrogen (T-N) was removed by this treatment. The residual T-N and total phosphorous (T-P) were removed by the algal periphyton treatment system. The final concentrations of nitrogen and phosphorous in the drain water were 53 and 7 mg/L, respectively.  相似文献   

20.
UF-两段厌氧处理茶多酚废水的研究   总被引:1,自引:0,他引:1  
采用前置超滤膜(UF)的两相厌氧工艺对原水COD为18362.6mg/L,荼多酚为3608.3mg/L、色度为2624.2倍的茶多酚生产废水进行为期90d的实验研究.结果表明,当实验压力为0.2Mpa时,膜组件对COD去除率为63.4%,茶多酚去除率为95.1%,色度去除率为93.4%.然后,对两相厌氧工艺的投配率、P含量和酸化段水力停留时间(HRT1)对废水COD、色度与茶多酚去除率和产气率的影响进行了研究.当投配率为15.0%、P含量为38.1mg/L、HRT1=24h,该工艺达到最佳处理效果,出水COD为1288.1mg/L,COD去除率为80.8%,色度为95.6倍,色度去除率为44.6%,残余茶多酚为119.8mg/L,茶多酚去除率为32.3%,产气率为0.85m3/kg COD,与未采用UF预处理的两相厌氧水解工艺相比,COD、色度和荼多酚去除率分别提高23.40%,10.2%和1613%,产气率增加0.15m3/kg COD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号