首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The nitrosylcarbonylisonitrile complexes η5-C5H5M(NO)(CO)CNR (R = Me for Cr, Mo, W; R = Et, SiMe3, GeMe3, SnMe3 for Mo) are formed by treatment of the nitrosylcarbonylcyanometalates Na[η5-C5H5M(NO)(CO)CN] with [R3O]BF4 (R = Me, Et), Me3SiCl, Me3GeCl or Me3SnCl. The isoelectronic dicarbonylisonitrile compounds η5-C5H5Mn(CO)2CNR (R = SiMe3, GeMe3, SnMe3, PPh2, AsMe2) and η5-C5H5Re(CO)2CNAsMe2 are obtained by analogous reactions of Na[η5-C5H5M(CO)2CN] (M = Mn, Re) with Me3ECl (E = Si, Ge, Sn), Ph2PCl and Me2AsBr.With phosgene the anionic complexes Na[η5-C5H5M(CO)2CN] (M = Mn, Re) can be transformed into the new carbonyldiisocyanide-bridged dinuclear complexes η5-C5H5M(CO)2CN-C(O)-NC(OC)2M-η5-C5H5. Finally, the reactions of η5-C5H5M(NO)(CO)CNMe (M = Cr, Mo, W) with NOPF6, leading to the cationic dinitrosylisonitrile complexes [η5-C5H5M(NO)2CNMe]+, are described.  相似文献   

2.
Preparation and Characterization of Cationic η2-1-Butene and Acetonitrile Complexes The reaction of the species η5-C5H5M(CO)n-σ-C4H7 (M = Fe, Mo, W; n = 2, 3) with (C6H5)3CBF4 yielded – instead of the expected cationic butadiene complexes of the type [η5-CpM(CO)n?14-C4H6][BF4], which would have been formed in case of hydride cleavage – compounds of the type [η5-CpM(CO)n η2-C4H8][BF4], which were formed by protonation of the σ-C4H7 ligands. The reaction proceeded quantitatively. The BF4? anion can be substituted by other anions, such as ClO4?, B(C6H5)4?, PF4?, and [Cr(SCN)4(NH3)2]? in the complexes obtained. The mechanism of the reaction leading to the η2-bonded 1-butene complexes was determined by isotope experiments. In trying to recrystallize the butene complexes from acetonitrile the cationic complexes [η5-C5H5 Fe(CO)2CH3CN]BF4 and [η5-C5H5 M(CO)3CH3CN]BF4 were observed; the X-ray structure analysis of the former is reported.  相似文献   

3.
When the ferraenolate anion, (η-C5H5)(CO)2FeC(O)CH2, is treated sequentially with methyllithium/TMEDA and benzoyl chloride, the known η3-allyl complex, (η-C5H5)(OC)Fe{η3-CH2C[OC(O)Ph]C[OC(O)Ph](CH3}, is isolated in 36% yield. When the neutral alkenyl complexes, (η-C5H5)(CO)2Fe[C(Me)CH2] and (η-C5H5)(OC)2Fe{C(OMe)CH2], were treated sequentially with methyllithium and benzoyl chloride, the η3-allyl complexes, (η-C5H5)(OC)Fe{η3-CH2C(Me)C[OC(O)Ph](Me) and (η-C5H5)(OC)Fe{η3-CH2C(OMe)C[OC(O)Ph](Me) are isolated in 8 and 11% yield, respectively. These η3-allyl ligands are presumably formed via CC coupling of the donor atoms of the formal acyl and alkenyl ligands in the intermediate complexes.  相似文献   

4.
The infrared spectra of [CpFe(CO)2]2, [CpMo(CO)3]2 and Mn2(CO)10 (Cp=η-C5H5) embedded in films of polystyrene (PS), poly(methyl methacrylate) (PMMA), and polystyrene-polyacrylonitrile (PS? AN), are comparable with those of the dimers in toluene, ethyl acetate and acetonitrile, respectively. Irradiation of the embedded dimers with UV light led to decomposition in PS and PMMA, while in PS? AN the complexes Cp2Fe2(CO)3PS? AN and Mn2(CO)9PS? AN were formed, wherein a pendant nitrile group is coordinated to one of the metal atoms. Exposure of the embedded dimers to iodine vapour gave CpFe(CO)2I, CpMo(CO)3I and Mn(CO)5I with the reaction being much slower in PMMA than in PS.  相似文献   

5.
Mass spectrometric studies have been made of the [(C7H8)Cr]+ ions generated from (η6-PhCH3)Cr(CO)3 and (η6-c-C7H8)Cr(CO)3. Fragmentation behaviour and appearance potential measurements have been used to show that the ions from the two precursors do not achieve a common structure. [(C8H10)Cr]+ generated from (η6-PhEt)Cr(CO)3 and (η6-c-C7H7Me)Cr(CO)3 behave similarly. A study of the α-d3 toluene complex suggests the structure [CH3C6H4–CrH]+ is appropriate for [C7H8Cr]+ ions generated from (η6-PhMe)Cr(CO)3 and decomposing to [CrH]+.  相似文献   

6.
The synthesis of new cyclopenta[l]phenanthrenyl complexes [(η5-C17H10Me)(η3-C3H5)Mo(CO)2] and [(η5-C17H9(COOMe)N(CH2)4)(η3-C3H5)Mo(CO)2] is described. Although these compounds are structural analogues their reactivity is different. Protonation of [(η5-C17H10Me)(η3-C3H5)Mo(CO)2] gives a stable ionic compound [(η5-C17H10Me)Mo(CO)2(NCMe)2][BF4] while its analogue containing both tertiary amino and carboxylic ester groups [(η5-C17H9(COOMe)N(CH2)4)(η3-C3H5)Mo(CO)2] decomposes under the same conditions. [(η5-C17H10Me)Mo(CO)2(NCMe)2][BF4] reacts with cyclopentadiene to give a stable η4-complex [(η4-C5H6)(η5-C17H10Me)Mo(CO)2][BF4] that was successfully oxidized to the Mo(IV) dicationic compound [(η5-C5H5)(η5-C17H10Me)Mo(CO)2][Br][BF4].  相似文献   

7.
Insertion of CO or p-TolNC into a ZrC bond of [Zr(η-C5H5).(R)R′] under ambient conditions in C6H6 leads to the stable η2-acyl- or η2-iminoacyl-complex [Zr(η-C5H5)22-C(X)R}R′] (X = O or NTol-p); with [Zr(η-C5H5)2{CH(SiMe3)2}Me] as substrate there is exclusive preference for scission of the more hindered ZrC bond.  相似文献   

8.
The negative ion mass spectra of a series of monomeric and dimeric η5-cyclopentadienyl transition metal carbonyls have been examined. The base peak in the case of the monomeric compounds (η5-C5H5)V(CO)4, (η5-C5H5)Mn(CO)3 and (η5-CH3C5H4)Mn(CO)3 arises from a reductive decarbonylation of the parent molecule—the resulting radical anion [M–CO]? is formally isoelectronic with the molecular cations [M]? observed in the positive ion mass spectra of these compounds and subsequently undergoes successive decarbonylations to the ‘aromatic’ cyclopentadienyl anions. For the compound (η5-C5H5)Co(CO)2, however, a molecular anion was observed as the base peak which has been formulated as [(η3-C5H5)Co(CO)2]? in the light of considerations based on the rare gas rule. As expected, the dimeric molecules [(η5-C5H5)M(CO)3]2 (where M = Cr or Mo) and [(η5-C5H5)Fe(CO)2]2 (and its methyl analogue) undergo reductive cleavage of their metal-metal bonds to give the anions [(η5-C5H5)M(CO)3]? and [(η5-C5H5)Fe(CO)2]? as the base peaks in their negative ion mass spectra. The dimeric nickel compound [(η5-C5H5)Ni(CO)]2, however, reductively decarbonylates to the [M-CO]? radical anion as its predominant fragmentation in the gas phase. Very low abundances of [(η5-C5H5)Fe(CO)2] and [(η5-CH3C5H4)Fe(CO)2] were also observed.  相似文献   

9.
Reactions of the Cycloheptatrienyl Complexes [η7-C7H7W(CO)3]BF4 and η7-C7H7Mo(CO)2Br with Neutral Ligands and the Electrochemical Reduction of the Wolfram Complex Compounds of the type [η7-C7H7M(CO)2L][BF4] (L = P(C6H5)3, As(C6H5)3, Sb(C6H5)3 for M = W and L = N2H4 for M = Mo) were synthesized and characterisized. The iodide η7-C7H7W(CO)2I reacts with the diphosphine ((C6H5)2PCH2)2 to give the trihapto complex η3-C7H7 W(CO)2I((C6H5)2PCH2)2. In the case of η7-C7H7Mo(CO)2 Br reaction with hydrazine leads to the substitution product [η7-C7H7 Mo(CO)2N2H4], which can be stabilized by large anions. The binuclear complex [C7H7W(CO)3]2 has been synthesized electrochemically.  相似文献   

10.
The two cyclooctatetraene metal carbonyls that have been synthesized are the tetrahapto derivative (η4-C8H8)Fe(CO)3 and the hexahapto derivative (η6-C8H8)Cr(CO)3 using the reactions of cyclooctatetraene with Fe(CO)5 and with fac-(CH3CN)3Cr(CO)3, respectively. Related C8H8M(CO)n (M = Ti, V, Cr, Mn, Fe, Co, Ni; n = 4, 3, 2, 1) species have now been investigated by density functional theory in order to explore the scope of cyclooctatetraene metal carbonyl chemistry. In this connection, the existence of octahapto (η8-C8H8)M(CO)n species is predicted as long as the central metal M does not exceed the 18-electron configuration by receiving eight electrons from the η8-C8H8 ring. Thus the lowest energy structures (η8-C8H8)Ti(CO)n (n = 3, 2, 1), (η8-C8H8)M(CO)n (M = V, Cr; n = 2, 1), and (η8-C8H8)Mn(CO) all have octahapto η8-C8H8 rings. An exception is (η6-C8H8)Fe(CO), with a hexahapto η6-C8H8 ring and thus only a 16-electron configuration for the iron atom. Hexahapto (η6-C8H8)M(CO)n structures are predicted for the known (η6-C8H8)Cr(CO)3 as well as the unknown (η6-C8H8)Ti(CO)4, (η6-C8H8)V(CO)3, (η6-C8H8)Mn(CO)2, and (η6-C8H8)Fe(CO)2 with 18, 18, 17, 17, and 18 electron configurations, respectively, for the central metal atoms. There are two types of tetrahapto C8H8M(CO)n complexes. In the 1,2,3,4-tetrahapto (η4-C8H8)M(CO)n complexes two adjacent CC double bonds, forming a 1,3-diene unit similar to butadiene, are bonded to the metal atom. In the 1,2,5,6-tetrahapto (η2,2-C8H8)M(CO)3 derivatives two non-adjacent CC double bonds of the C8H8 ring are bonded to the metal atom. The known (η4-C8H8)Fe(CO)3 is a 1,2,3,4-tetrahapto complex. The unknown isomeric 1,2,5,6-tetrahapto complex (η2,2-C8H8)Fe(CO)3 is predicted to lie ∼15 kcal/mol above (η4-C8H8)Fe(CO)3. The related 1,2,5,6-tetrahapto complexes (η2,2-C8H8)Cr(CO)4, (η2,2-C8H8)Mn(CO)4, [(η2,2-C8H8)Mn(CO)3], (η2,2-C8H8)Co(CO)2, and (η2,2-C8H8)Ni(CO)2 are all predicted to be low-energy structures.  相似文献   

11.
Dehydrogenating complexation of borolenes with carbonyls (Ru3(CO)12, Os3(CO)12), Wilkinson's catalyst (RhCl(PPh3)3) and related compounds (RuCl2(PPh3)3, RuHCl(PPh3)3, OSCl2(PPh3)3), and (η6-arene)ruthenium complexes (Ru(η-C6H6)(η4-C6H8), [Ru(η-C6H6)Cl2]2, [Ru(η-C6-Me6)Cl2]2) leads to the (η5-borole)metal complexes of Ru, Os, and Rh. Inter alia, the preparation of the complexes Ru(CO)35-C4H4BF) (R = Ph, OMe, Me), Os(CO)3L (L = η5-C4H4BPh), MHClL(PPh3)2 (M = Ru, Os), RhClL(PPh3)2, and RuL(η-C6R6) (R = H, Me) is described. The structures of RuHClL(PPh3)2 and RhClL(PPh3)2 have been determined by X-ray diffraction analysis.  相似文献   

12.
Dissolution of [MoCl(CO)23-C3H4R)(NCMe)2] (R = H or Me) in methanol yields yellow conducting solutions containing the [Mo(CO)23-C3H4R)(HOMe)3]+ cations. The same species are formed on dissolution of [Mo(CO)23-C3H4R)(NCMe)3]BF4 in methanol, and one of the cations (R = Me) has been isolated as its tetrafluoroborate salt. There is strong spectroscopic evidence that hydrated allyldicarbonylmolybdenum(II) cations [Mo(CO)23-C3H4R)(H2O)x]+ are present on dissolution of [MoCl(CO)23-C3H4R)(NCMe)2] in deoxygenated water, and treatment of these solutions with bi- and tridentate ligands yields neutral complexes [MoCl(CO)23-C3H4R)L2] (R = H or Me; L2 = 2,2′-bipyridine (bipy) or 2,2′-bipyridylamine (bpa)), and cationic species [Mo(CO)23-C3H4R)L3]+ (R = H or Me; L3 = diethylenetriamine (dien) or bis(2-pyridylmethyl)amine (bpma)) respectively. The latter were isolated as their hexafluorophosphate salts. Addition of Ph4AsCl to basic methanolic solutions of [MoCl(CO)23-C3H4R)(NCMe)2] causes the precipitation of the anionic molybdenum derivatives Ph4As[Mo2(CO)43-C3H4R)2(μ-OMe)3] (R = H or Me).  相似文献   

13.
The reaction of 2-borolenes and 3-borolenes C4H6BR (R = Ph, Me, C6H11, OMe) with Mn, Fe, and Co carbonyls leads to dehydrogenating complexation with formation of simple, i.e. C-unsubstituted (η5-borole)metal complexes. Thus, Mn2(CO)10 gives the triple-decked complexes (μ-η5-C4H4BR)[Mn(CO)3]2 (R = Ph, OMe). By irradiation of Fe(CO)5 the half-sandwich complexes Fe(CO)35-C4H4BR) (R = Ph, Me, C6H11, OMe) are formed, whereas Co2(CO)8 yields the dinuclear complexes (μ-CO)2[Co(CO)(η5-C4H4BR)]2 (Co-Co) (R = Ph, Me). A low-temperature X-ray structure determination of Fe(CO)35-C4H4BPh) is described in detail.  相似文献   

14.
Transition Metal Substituted Acylphosphanes and Phosphaalkenes. 17. Synthesis and Structure of the μ-Isophosphaalkyne Complexes [(η5-C5H5)2(CO)2Fe2(μ-CO)(μ-C?PC6H2R3)] (R = Me, iPr, tBu) . Condensation of (η5-C5H5)2(CO)2Fe2(μ-CO)(μ-CSMe)}+SO3CF3? ( 6 ) with 2,4,6-R3C6H2PH(SiMe3) ( 7 ) ( a : R = Me, b : R = iPr, c : R = tBu) affords the complexes (η5-C5H5)2(CO)2Fe2(μ-CO)(η-C?PC6H2R3-2,4,6) ( 9 a–c ) with edge-bridging isophosphaalkyne ligands as confirmed by the x-ray structure analysis of 9 a .  相似文献   

15.
The 13C NMR spectra of the five series of chalcocarbonyl complexes, (η6-C6H6)Cr(CO)2(CX), (η6-C6H5CO2Me)Cr(CO)2(CX), (η5-C5H5)Mn(CO)2(CX), (η5-C5H4Me)Mn(CO)2(CX) and (η5-C5H5)Re(CO)2(CX) (X = O, S, Se), and some of their derivatives including several 13C-enriched species have been investigated at ?30 to ?50°C. The chemical shift variations observed with changes in the CX ligand suggest that the π-acceptor/σ-donor capacity of these ligands increases in the order CO < CS < CSe. Changes in the nuclear charge and in the electronic density at the central metal atom affect δ(13CS) and δ(13CO) in the same manner. The increased downfield chemical shift for δ(13CX) in the chromium and manganese series on changing X from O to S and Se is in the direction expected from considerations of Pople's paramagnetic shielding expression.  相似文献   

16.
Microcalorimetric measurements at elevated temperatures of the heats of thermal decomposition and iodination have led to values of the standard enthalpies of formation of the following crystalline compounds (values given in kJ mol?1) at 298K: [Cr(η6-1,3,5-C6H3(CH3)3)2] = (63±12); [Cr(η6-C6(CH3)6)2] : -(88±12); [Cr(1,2,3,4,4a,8a-η-C10H8)2] = (407±11); [Cr(CO)3(1,2,3,4,4a,8a-η-C10H8)] = -(258±8). Separate measurements by the vacuum sublimation microcalorimetric technique gave the following values for the enthalpy of sublimation at 298K (kJ mol?1) : [Cr(η6-1,3,5-C6H3(CH3)3)2] = (104±1); [Cr(η6-C6(CH3)6)2] = (119±4); [Cr(CO)3(1,2,3,4,4a,8a-η-C10H8)] = (107±3). From these and other data, the bond enthalpy contributions of the metal-ligand bonds in the gaseous metal complexes were evaluated as follows: [(η6-C6(CH3)6)-Cr] (155±7); [(η6-C6H3(CH3)3)-Cr] (151±6); [(1,2,3,4,4a, 8a-η-C10H8)-Cr](145±6) kJ mol?1]The question of the transferability of the enthalpy contributions of chromium—ligand bonds between organochronium complexes is discussed with aid of information from structural and spectroscopic investigation. The limitations of the procedure are defined.The thermodynamic data are used to discuss various substitution, redistribution and exchange reaction of Cr(η-arene)2 and [Cr(CO)3(η-arene)] compounds.  相似文献   

17.
The reaction between InCl and [Mo2(CO)6(η-C5H5)2] affords [InCl&{;Mo(CO)3(η-C5H5)&};], 6a which has been characterised as a THF adduct [InCl(THF)&{;Mo(CO)3(η-C5H5)&};2], 10, by X-ray crystallography. An additional complex, [InCl2&{;Mo(CO)3(η-C5H5)&};2], 11, is also formed in this reaction. Similar products are reported for reactions involving [M2(CO)6(η-C5H5)2] (M = Cr, W). The reaction between InCl and [Fe2(CO)4(η-C5H5)2] affords [InCl{Fe(CO)2(η-C5H5)}2], 17, and [InCl2{Fe(CO)2(η-C5H5)}], whilst that between InI and [Fe2(CO)4(η-C5H5)2] affords [InI{Fe(CO)2(η-C5H5)}2], 19.  相似文献   

18.
Alkylation of K[η5-C9H7Cr(CO)3] (Xa) with CH3I and C6H5CH2Br leads to σ-alkyl derivatives of η5-C9H7Cr(CO)3Alk type. These complexes undergo innersphere “ricochet” rearrangement, with the alkyl group being shifted to the endo position at C(1) and the chromium tricarbonyl group shifted to the benzene nucleus. The structure of the product of such a rearrangement in the case of η5-C9H7(CO)3CrCH2C6H5, i.e. (1-benzyl-3a,4-7,7a-η6-indene)chromium tricarbonyl (XVIII), is established by a low temperature X-ray study, indicating an endo position for the benzyl radical.On alkylation of equilibrium tautomeric mixtures of η5- and η6-fluorenylchromium tricarbonyl anions XIa ? XIb under similar conditions, the η5-anion (Xa) yields a σ-alkyl derivative, which is rearranged to (9-endo-alkyl-1-4,4a,9a-η6-fluorene)chromium tricarbonyl. Electrophilic attack of the η6-anion (XIb) takes place on the outer side at C(9) and leads to a corresponding 9-exo-alkyl derivative.  相似文献   

19.
Heterobimetallic Phosphanido-bridged Dinuclear Complexes - Syntheses of cis-rac-[(η-C5H4R)2Zr{μ-PH(2,4,6-iPr3C6H2)}2M(CO)4] (R?Me, M?Cr, Mo; R?H, M?Mo) The zirconocene bisphosphanido complexes [(η-C5H4R)2Zr{PH(2,4,6-iPr3C6H2)}2] (R?Me, H) react with [(NBD)M(CO)4] (NBD?norbornadiene, M?Cr, Mo) to give only one diastereomer of the phosphanido-bridged heterobimetallic dinuclear complexes cis-rac-[(η-C5H4R)2Zr{μ-PH(2,4,6-iPr3C6H2)}2M(CO)4] [R?Me, M?Cr ( 1 ), Mo ( 2 ); R?H, M?Mo ( 3 )]. However, no reaction was observed between [(η-C5H5)2Zr{PH(2,4,6-tBu3 C6H2)}2] and [Pt(PPh3)4]. 1—3 were characterised spectroscopically. For 1—3 , the presence of the racemic isomer was shown by NMR spectroscopy. No reaction was observed at room temperature for 3 and CS2, (NO)BF4, Me3NO or PH(2,4,6-Me3C6H2)2. With Et2AlH or PhC?CH decomposition of 3 was observed.  相似文献   

20.
A large variety of (η5-borole)cobalt complexes have been prepared starting with η-(CO)2[Co(CO)(η5-C4H4BR)]2(CoCo) (IIIa: R = Me, IIIb: R = Ph), including inter alia, the sandwich complexes CpCo(η5-C4H4BR) (VIIa, b), the triple-decked complexes η-(η5-C4H4BR)[Co(η5-C4H4BR)]2 (VIIIa, b) and μ-(η5-C4H4BR)(FeCp)[Co(η5-C4H4BR)] (X, R = Ph), the dinuclear complex μ-(CO)2[Fe(CO)Cp][Co(CO)(η5-C4H4BPh)](FeCo) (IX), and salts M[Co(η5-C4H4BR)2](XVa, b: M = Na; XVIa, b: M = NMe4; XVII: M = Cs, R = Ph). The anions [Co(η5-C4H4BR)2] readily undergo stacking reactions to form multiple-decked complexes such as the triple-decker compounds μ-(η5-C4H4BR)[Mn(CO)3][Co(η5-C4H4BR)] (XIIa, b), μ-(η5-C4H4BR)[Co(η5-C4H4BR)][Rh(η-1,5-COD)] (XVIII), [NMe3Ph][μ-η5-C4H4BPh){Cr(CO)3}{Co(η5-C4H4BPh)}] (XX), and the quadruple-decker complex Ru[μ-(η5-C4H4BR)Co(η5-C4H4BR)]2 (XXI). The monofacially bound η5-borole ligands in VIIb and VIIIb shows regiospecific H/D exchange, at the α position of the boron, on treatment with CF3CO2D at room temperature. VIIb undergoes a Friedel-Crafts substitution to give the 2-acetyl derivative XXIV with MeCoCl/SnCl4 in CH2Cl2 at room temperature.The structure of VIIIa, as determined by X-ray diffraction studies is that of a typical triple-decker compound with nearly coplanar rings. The three borole rings form a helix with torsional angles of 59.8 and 72.2°. All intra-ring bond distances of the central ligand are longer than those of the outer ligands. The metal-ligand interaction is somewhat stronger for the outer ligands than for the central ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号