首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The direct polycondensation reaction of diphenyl chlorophosphate (DPCP) as a new condensing agent in pyridine was used for the preparation of polyarylene esters. High-molecular-weight polymers can be prepared by reacting a pyridine solution of dicarboxylic acids and DPCP in the presence of LiCl, followed by treating with a pyridine solution of bisphenols. About an equivalent of LiCl, and 30 mol % excess of DPCP were most favorably added. Effects of the initial reaction of the acids and DPCP, and of dropwise addition of bisphenols on the polycondensation were investigated. Polycondensations of several hydroxybenzoic acids were also carried out with limited success.  相似文献   

2.
3.
Copolycondensation of isophthalic (IPA) and terephthalic (TPA) acids, methylhydroquinone (MeHQ), and aromatic diamines with diphenyl chlorophosphate (DPCP) in pyridine were investigated. The resulting copoly(ester-amides) showed optical anisotropy, which was discussed in terms of the ester and amide sequence lengths in the copolymers. The temperature above which the anisotropy was observed varied in the 225 to 300°C range by changing addition time of a mixture of MeHQ and diamines, initial reaction with MeHQ, and the further reaction with diamines.  相似文献   

4.
5.
High molecular weight aromatic poly(amide-ester)s were prepared by the direct polycondensation reactions between aromatic dicarboxylic acids and aminophenols under mild conditions in pyridine. The condensing agents examined in this study were diphenyl chlorophosphate (DPCP), DPCP/LiCl, and DPCP/DMF. Addition time of the aminophenols, depending on their nucleophilicities, affected the ηinh values and monomer sequence of the resulting polymer. Their thermal properties were studied in terms of the sequences in the polymer backbones.  相似文献   

6.
The effects of a modification of the relative reactivity of carboxyl groups to hydroxy groups in monomers on the direct polycondensation of hydroxybenzoic acids was investigated. Polycondensation with diphenyl chlorophosphate (DPCP) was largely promoted by carrying out the reaction in the presence of ethers which are capable of complexing with carboxyl groups in the monomers. The amount of alkyl ethers, such as, poly(ethylene oxide) (PEO) corresponding to an equivalent unit mole of carboxyl groups was effectively added. The molecular weights of the polymers produced increased with the higher molecular weights of PEO, showing maximum values by use of PEO of 1–2.5 × 105.  相似文献   

7.
The reaction promoted by diphenyl chlorophosphate (DPCP) and LiCl was found to be effectively used for the preparation of aromatic polyesters with high molecular weights directly from hydroxybenzoic acids when the condensing agent was added dropwise. The reaction was successfully to the direct polycondensation reaction of p-aminobenzoic and hydroxybenzoic acids, giving high-molecular-weight copoly(amide—ester)s soluble in amide or phenolic solvents. Copolycondensations of isophthalic and terephthalic acids with bisphenols and aromatic diamines were also examined by adding the DPCP solution to a mixture of these monomers or by initial reaction of DPCP with the acids followed by dropwise addition of a mixture of bisphenols and the diamines. The latter stepwise reaction gave random copolymers soluble in amide and phenolic solvents. Thermal properties of these copolymers were studied.  相似文献   

8.
The direct polycondensation of isophthalic acid (IPA) and aromatic diamines with a new phosphorus compound, phenylphosphonic dichloride (PPDC), was studied. PPDC could actually react with nearly a two molar amount of carboxyl groups, but more than 75 mol % PPDC with respect to the carboxyl groups of IPA were satisfactorily used in the polycondensation. The initial reaction of IPA with PPDC in pyridine at room temperature and then at 120°C was needed to complete the activation, and the subsequent aminolysis at 120°C for 3 h was most effective. The polyamides of high inherent viscosity were obtained even from weakly basic aromatic diamines, and their values were more than those obtained by the conventional method. In their thermal properties determined by the DTA, they showed Tgs and Tms higher than those reported before.  相似文献   

9.
The reaction promoted by diphenyl chlorophosphate (DPCP) in pyridine was successfully applied to the preparation of soluble aromatic copolyesteramides of high molecular weights directly from aromatic dicarboxylic acids, bisphenols, and a wide range of mol % aromatic diamines. Dropwise addition of a mixture of bisphenols and diamines (more favorably of bisphenols and then diamines) to the mixture of dicarboxylic acids activated by DPCP led the reactions homogeneously even with high mol % of diamines to produce copolymers of good solubility. This improved copolymer solubility was roughly estimated by sequence distribution of polyamide and polyester units in the copolymers, which was studied in a model reaction and in the copolycondensations by simultaneous and stepwise addition of bisphenols and diamines.  相似文献   

10.
Mechanistic features of the reaction with thionyl chloride in pyridine were studied in a model reaction of benzoic acid with p-chlorophenol or aniline. The yields were significantly affected by the amounts of pyridine, favorably by four equivalents, and the nature of pyridine, suggesting that pyridines are not only HCl scavengers, but are also involved in the reaction itself. The reaction was assumed to proceed via a carboxylic sulfinic-anhydride intermediate different from acyl chloride, and the intermediate was found to be not so reactive that it was completely alcoholyzed by the phenol at high temperatures of more than 60°C. The reaction was successfully applied to the preparation of aromatic polyesters of high molecular weights by the direct polycondensation of aromatic dicarboxylic acids and bisphenols in pyridine at 80°C.  相似文献   

11.
The reaction promoted by Vilsmeier adduct derived from tosyl chloride (TsCl) with N,N-dimethylformamide (DMF) was successfully applied to the preparation of copolyesteramides of high molecular weights directly from aromatic dicarboxylic acids, diamines, and bisphenols. The polycondensation was significantly affected by the reaction of activated dicarboxylic acids with bisphenols and diamines. Addition of a mixture of bisphenols and diamines likely caused gelation of the reaction mixtures, resulting in insoluble polymers, especially with high mol % diamines. Stepweise addition of them, however, gave the homogeneous reaction mixtures and copolymers of better solubility. These phenomena were studied in terms of sequence length distribution of polyester units, which was estimated by thermal analyses of the random copolymers prepared under various conditions for the initial reaction with bisphenols.  相似文献   

12.
13.
The diphenyl chlorophosphate (DPCP)-promoted polycondensation reaction between aromatic dicarboxylic acids and bisphenols was largely improved by carrying out the reaction in the presence of lithium halides to give high molecular weight aromatic polyesters. Among the halides LiBr, which is capable of forming a complex with hexamethylphosphoramide, was most effective, suggesting that a similar complexation of DPCP with LiBr in pyridine facilitates the complete reaction of DPCP with carboxyl groups. The complex could selectively activate carboxyl groups of hydroxybenzoic acids to give high molecular weight copolyesters from several combinations of aromatic hydroxy acids. The reaction could also be adaptable to the copolycondensations of a mixture of the dicarboxylic acids, bisphenols, and hydroxybenzoic acids.  相似文献   

14.
Arylsulfonyl chlorides were successfully used as a new condensing agent for the synthesis of polyaryl esters by the direct polycondensation of aromatic dicarboxylic acids and bisphenols. High-molecular-weight polymers (Mw = 84,000) were prepared by reacting dicarboxylic acids with the sulfonyl chlorides in pyridine in the presence of LiCI, followed by treating with a pyridine solution of bisphenols. The polycondensation was significantly affected by factors, such as, the kind of arylsulfonyl chlorides, its amount, the conditions of initial reaction of the acids with the sulfonyl chlorides, the amounts of LiCI added, and dropwise addition of bisphenols.  相似文献   

15.
以苯酚、三氯氧磷为原料,以无水三氯化铝为催化剂合成了氯化磷酸二苯酯;采用正交试验研究了反应温度、反应时间、催化剂用量和原料配比对反应收率的影响,确定了最佳工艺条件;并利用红外光谱和核磁共振谱表征了产物的结构.结果表明,影响反应收率的几种因素的排序为:反应温度>原料配比>催化剂用量>反应时间;最佳反应条件为:温度70℃、反应时间15h、原料配比(n苯酚∶n三氯氧磷)2∶1、催化剂用量0.8g(相对于苯酚的质量分数为4.25%).与此同时,采用加水后处理方法可以提高产品收率和可操作性.  相似文献   

16.
In a model reaction of terephthalic acid with aniline by using triphenyl phosphite in a mixed solvent of pyridine and N-methylpyrrolidone (NMP), mono- and dianilides were produced with relative yields varying with the content of pyridine in the solvent. The polycondensation of terephthalic acid with aromatic diamines was found to proceed more favorably via monoamidation, and highmolecular-weight polyterephthalamides were prepared by controlling initiation conditions (selective activation of carboxylic groups), such as initial solvent systems, including the amount and kind of pyridines and initiation temperatures.  相似文献   

17.
The reaction with tosyl chloride was significantly promoted by controlling alcoholysis with bisphenols in the presence of catalytic amounts of formamides to give aromatic polyesters with high molecular weights from aromatic dicarboxylic acids and bisphenols. Mechanistic features of the reaction were studied by use of various formamides and other arylsulfonyl chlorides, as well as by varying the addition mode of bisphenols and changing the relative amount of formamide. The reaction was successfully applied to the preparation of aromatic polyesteramides with high molecular weights from aromatic dicarboxylic acids, bisphenols, and diamines, but with limited success to that of polyamides.  相似文献   

18.
A convenient method for the synthesis of polyester‐containing amino substitutes on the aromatic rings of the backbone has been developed. This polyester was prepared by chemoselective polyesterification of isophthalic acid with bisphenol having an amino group in the presence of the condensing agent diphenyl(2,3‐dihydro‐2‐thioxo‐3‐benzoxazolyl)phosphonate ( 1 ) and 1,5‐diazabicyclo[4,3,0]‐5‐nonene as a base. The model reactions were carried out in detail to elucidate appropriate conditions of chemoselective polyesterification. Direct polycondensation of isopthalic acid with 4,4′‐[1‐(4‐aminophenyl)ethylidene]bisphenol proceeded smoothly under mild conditions and produced the desired polyester with a number average molecular weight of 11,000 and Mw/Mn of 2.22. The polymer obtained was characterized by IR, 1H, and 13C NMR spectroscopies. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 78–85, 2001  相似文献   

19.
20.
Direct polycondensation reactions of various dicarboxylic acids and diols were carried out at room temperature with triphenylphosphine and polyhalo compounds to obtain polyesters in good yield. Reaction conditions including solvent, temperature, concentration of monomer, amount of reagents, and effect of matrix on direct polycondenation were investigated. A combination of triphenylphosphine and hexachloroethane was found to be satisfactory for the polyester synthesis. The addition of matrix polymers such as poly(4-vinylpyridine) in the reaction system enhanced the direct polycondensation reaction, and a polyester with a solution viscosity of 2.24 was obtained from bisphenol A and isophthalic acid under the optimum condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号