首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Feasibility was demonstrated for the electrochemical activation of freons CF2ClCFCl2 (CFC113), CF3Br (FC13B1), and CF2Cl2 (CFC12) as well as CF3I using nickel complexes with azamacrocyclic and bipyridyl ligands as electron transfer mediators, permitting the reduction of freons under mild conditions at relatively low potentials. The catalytic efficiency of these complexes was determined for freon CFC113.  相似文献   

2.
Tetracloro-o-benzoquinone reacts with (diphenylacetylene)bis(tirphenylphosphine)platinum(0) to give the novel platinum(II) diphenylacetylene complex, Pt(C6Cl4O2)PhCCPh)(PPh3), (I), which reacts with hydrogen halides to give the compelexes cis-PtX2(PhCCPh((PPh3), (X = Cl or Br). Hydrogen chloride also readily removes the tetrachloro-o-benzoquinoneligand from the adducts Ni(C6Cl4O2)(Ph2PCH2CH2PPh2) and M(C6Cl4O2)(PPh3)2, (M = Pd or Pt) but it has no reaction upon Ir(Cl)(C6Cl4O2)(CO)(PPh3)2 at room temperature. The acetylene in (1) is susceptible to nucleophilic attact and reaction with diethylamine gives the vinyl adduct Pt(C6Cl4O2)(CPhCPh)NHEt2)(PPh3). Other reactions of (I) have also been studied. Attemps to prepare other olefin or acetylene complexes of platinum(II) by the action of tetrachlor-o-benzoquinone on the complexes Pt(L)(PPh3)2, (L = PhCCH,(Et)(Me)(HO)CCCC(OH)(Me)(Et), HOCH2OH, CF3CCCF3, CF2CF2, CF2CH2 or trans-PhCHCHPh) are also described.  相似文献   

3.
The formation of weakly bound molecular complexes between dimethyl ether (DME) and the trifluoromethyl halides CF3Cl, CF3Br and CF3I dissolved in liquid argon and in liquid krypton is investigated, using Raman and FTIR spectroscopy. For all halides evidence is found for the formation of C? X???O halogen‐bonded 1:1 complexes. At higher concentrations of CF3Br, a weak absorption due to a 1:2 complex is also observed. Using spectra recorded at temperatures between 87 and 125 K, the complexation enthalpies for the complexes are determined to be ?6.8(3) kJ mol?1 (DME?CF3Cl), ?10.2(1) kJ mol?1 (DME?CF3Br), ?15.5(1) kJ mol?1 (DME?CF3I), and ?17.8(5) kJ mol?1 [DME(?CF3Br)2]. Structural and spectral information on the complexes is obtained from ab initio calculations at the MP2/ 6‐311++G(d,p) and MP2/6‐311++G(d,p)+LanL2DZ* levels. By applying Monte Carlo free energy perturbation calculations to account for the solvent influences, and statistical thermodynamics to estimate the zero‐point vibrational and thermal influences, the ab initio complexation energies are converted into complexation enthalpies for the solutions in liquid argon. The resulting values are compared with the experimental data deduced from the cryosolutions.  相似文献   

4.
The following zinc(II), cadmium(II) and mercury(II) complexes of 4,6-dimethylpyrimidine-2(1H)-one (L) have been prepared and investigated by conductometric,IR and Raman methods: MX2L2 (M = Zn, X = Cl, Br(CHCl3, I(CHCl3, CF3COO; M = Cd, X = Cl, Br CF3COO; M = Hg, X = Cl, CF3COO), Cd2I4L3, Hg3X6L2 (X = Cl, Br), Hg3X6L4(X = Br, I), MX2L4·6H2O (M = Zn, Cd, X = CIO4, BF4; M = Hg, X = CIO4. The ligand is principally bonded through the unprotonated nitrogen atom and in some complexes also through the carbonylic oxygen atom. The zinc halide complexes are tetrahedrally coordinated, the trifluoroacetate ion is coordinated as a monodentate ligand.  相似文献   

5.
Summary TheN-aminorhodanine (L) complexes: PdLX, (X = Br or I), ML1.5Cl2 (M = Pd or Pt), PtL2X2 (X = Br, I or ClO4), PdL3(ClO4)2, PdL1.5Cl4 and PdL3(ClO4)4 have been prepared and investigated. The ligand is bonded to the metal ion through the aminic nitrogen atom as monodentate or through this atom and the thiocarbonylic sulphur atom when it acts as chelating or bridging ligand. The carbonylic oxygen atom is never coordinated.  相似文献   

6.
N-Carboethoxy-4-chlorobenzene thioamide (Hcct or HL) and N-carboethoxy-4-bromobenzene thioamide (Hcbt or HL) react with bivalent (Ni, Co, Cu, Ru, Pd and Pt), trivalent (Ru and Rh) and tetravalent (Pt) transition metal ions to give [MII(L)2], [RuIII(L)3], [RhIII(L)(HL)Cl2] and [Pt(L)2Cl2] complexes, respectively. In the presence of pyridine, CoII and NiII salts react with the ligands (HL) to give [MII(L)2Py] (M = Co and Ni) complexes. Soft metal ions abstract sulphur from the ligands to yield the corresponding sulphide, together with oxygenated forms of the ligands. All the metal complexes have been characterised by chemical analyses, conductivity, spectroscopic and magnetic measurements.  相似文献   

7.
Quantum chemical calculations of compounds with a pentacoordinated nitrogen atom such as NF2H3 (in the CCSD(Full)/6-311++G(d,p) approximation), NF2Cl3 and NF2Br3 (in the B3LYP/6-311+G(d) approximation) are carried out. It is found that NF2Cl3 and NF2Br3 molecules are structurally stable, but thermodynamically unstable, and are isomerized to NFCl2...FCl and NFBr2...FBr molecular complexes respectively. The total energy of NFCl2...FCl and NFBr2...FBr complexes is lower than the total energy of NF2Cl3 and NF2Br3 molecules by 62 kcal/mol and 64 kcal/mol respectively. The trigonal bipyramidal form of the NF2H3 molecule of D 3h symmetry is structurally unstable: a first-order saddle point corresponds to it on the potential energy surface of the system. A second-order saddle point is found on the reaction path of NF2H3 isomerization.  相似文献   

8.
Summary Some new crystalline copper(I) complexes of rhodanine (HL) have been prepared and studied by i.r. and conductometric methods. The neutral ligand is bonded to the metal atom through the thiocarbonylic sulphur atom. The Cu(HL)2OH · 0.5 H2O complex has a dimeric tetrahedral hydroxyl-bridged structure as have the isostructural halides Cu(HL)2X (X = Cl, Br and I) for which the halide-bridged stretching bands have been identified. The Cu(HL)3A (A = ClO4, BF4, 0.5 SO4 and CF3CO2) complexes have monomeric distorted tetrahedral structures with the anion bonded to the metal.  相似文献   

9.
ESCA and contact angle measurements were used to characterize the surfaces of polypropylene and glass substrates exposed to CF4, CF3H, CF3Cl, and CF3Br plasmas. The use of both organic and inorganic substrates allowed clear distinction between treatments which led to plasma polymerization and treatments which caused grafting of functional groups directly to the substrate surfaces. CF4 plasmas were the only treatments studied which fluorinated polypropylene surfaces directly, without the deposition of a thin, plasma-polymerized film. CF3H polymerized in a plasma, while CF3Cl and CF3Br plasmas caused chlorination and bromination of polypropylene surfaces, respectively. Correlations were made between the active species present in the plasmas and the surface chemistry observed on the treated polypropylene substrates.  相似文献   

10.
《Polyhedron》1987,6(10):1875-1878
Reaction of trans-[M(cyclam)Cl2]Cl (M = Co, Ru; cyclam = 1,4,8,11-tetra-azacyclotetradecane) with anhydrous CF3SO3H at elevated temperatures formed initially trans-[M(cyclam)Cl(OSO2CF3)](CF3SO3), with trans-[M(cyclam)(OSO2CF3)2](CF3SO3) formed after extended reaction time. The complexes were characterized by spectroscopy, and rate constants for the rapid aquation of the bound CF3SO3 determined. In the case of the cobalt(III) complexes, derivatives were prepared by substitution of the CF3SO3 ligand by the neutral ligands acetonitrile and dimethylformamide.  相似文献   

11.
Perfluormethyl-Element-Ligands. XL. Chromium and Tungsten Pentacarbonyl Complexes of Bis(trifluoromethyl)phosphanes of the Type (F3C)2PX′ (X′ = H, F, Cl, Br, I, NEt2) The complexes M(CO)5P(CF3)2X′ (M = Cr, W; X′ = H, F, Cl, Br, I) are obtained in preparative amounts (yields between 15 and 42%) by reacting the ligands (F3C)2PX′ with the adducts “M(CO)5CH2Cl2”, photochemically generated from M(CO)6 in methylene chloride. The corresponding derivatives of the aminophosphane Et2NP(CF3)2 can be produced in good yields (60–75%) using the THF complexes M(CO)5THF as precursors. The spectroscopic data (MS, IR, NMR) of the new compounds are reported. The CO valence frequencies v(CO) and the coordination shifts Δδ prove the high π-acidity of the ligands (F3C)2PX′.  相似文献   

12.
The reaction of nickel(II)chloride with γ-mercapto-propylamine in ethanolic solution gives the complex [Ni3(MPA)4]Cl2(MPA=NH2-(CH2)3-S). The complexes [Ni3(MPA)4]X2(X=Br, I, ClO4) can be synthesized from the chloride complex by addition of the sodium salt in aqueous solution. The crystal structure consists of discrete divalent trinuclear cations and chloride anions. Each sulphur atom of the ligand acts as a bridge between two nickel atoms, and the nitrogen atoms complete the coordination around the terminal nickel atoms. The geometry around the metal atoms is square-planar. The electronic and IR spectra of the complexes [Ni3(MPA)4]X2(X=Br, I, ClO4) indicate that all these compounds are composed of the [Ni3(MPA)4]2+ and X? ions.  相似文献   

13.
The catalytic activity of ruthenium(II) bis(diimine) complexes cis‐[Ru(6,6′‐Cl2bpy)2(OH2)2](Z)2 ( 1 , Z = CF3SO3; 2 , Z = (3,5‐(CF3)2C6H3)4B, i.e. BArF) and cis‐[Ru(4,4′‐Cl2bpy)2(OH2)2](Z)2 ( 3 , Z = CF3SO3; 4 , Z = BArF) for the hydrogenation and/or the hydrogenolysis of furfural (FFR) and furfuryl alcohol (FFA) was investigated. The molecular structures of cis‐[Ru(4,4′‐Cl2bpy)2(CH3CN)2](CF3SO3)2 ( 3 ′) and dimeric cis‐[(Ru(4,4′‐Cl2bpy)2Cl)2](BArF)2 ( 5 ) were characterized by X‐ray crystallography. The structures are consistent with the anticipated reduction in steric hindrance about the ruthenium centers in comparison with corresponding complexes containing 6,6′‐Cl2bpy ligands. While compounds 1 , 2 , 3 , 4 are all active and highly selective catalysts for the hydrogenation of FFR to FFA under modest reaction conditions, 3 and 4 showed decreased activity. This is best explained in terms of reduced Lewis acidity of the Ru2+ centers and reduced steric hindrance about the metal centers of catalysts 3 and 4 . cis‐[Ru(6,6′‐Cl2bpy)2(OH2)2](BArF)2 ( 2 ) also displayed high catalytic efficiency for the hydrogenation of FFA to tetrahydrofurfuryl alcohol. Presumably, this is because coordination of C═C bonds of FFA to the ruthenium center is poorly inhibited by non‐coordinating BArF counterions. Interestingly, cis‐[Ru(6,6′‐Cl2bpy)2(OH2)2](CF3SO3)2 ( 1 ) showed some catalytic activity in ethanol for the hydrogenolysis of FFA to 2‐methylfuran, albeit with fairly modest selectivity. Nonetheless, these results indicate that ruthenium(II) bis(diimine) complexes need to be further explored as catalysts for the hydrogenolysis of C―O bonds of FFR, FFA, and related compounds. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Pentacarbonyl(arylphenylcarbene)tungsten complexes, (CO)5W[C(p-C6H4R)C6H5] (Ia, R = OCH3; Ib, R = CH3; Ic, R = H; Id, R = Br; Ie, R = CF3) react with dimethylcyanamide (II) via insertion of the CN group into the metalcarbene bond. The formation of pentacarbonyl[dimethylamino(imino)carbene]tungsten(0) (IIIa–IIIe) follows a second-order rate law: d[III]/dt = k[I][II]. Replacement of R = H by electron-withdrawing substituents (Br, CF3) results in an increase, by electron-donating groups (CH3, OCH3) in a decrease of the reaction rate. The rate constants correlate well with Hammett's σ-constants. The activation enthalpies ΔH are low (37.3–41.6 kJ mol?1), the activation entropies ΔS strongly negative (?119 to ?133 J mol?1 K?1). The results are discussed on the basis of an associative stepwise mechanism with a nucleophilic attack of the CN group of II at the carbene carbon in the first reaction step.  相似文献   

15.
Negative ion formation in CF2Cl2, CF3Cl and CFCl3 under low-energy electron impact has been investigated using a trochoidal monochromat The ions observed are F?, Cl?, FCl?, Cl2?, CFCl2? from CF2Cl2; F?, Cl?, FCl?, CF2Cl Quoting available thermochemical data, it can be shown that most of the observed negative ions arise from dissociative attachment processes. Appearance The extremely high yield of Cl? in CFCl3, which is observed at ε = 0.0 eV, will be discussed with regard to the lifetime of this molecule i  相似文献   

16.
The preparation of a series of complexes formed by 1-methyl-4-mercaptopiperidine (AH) and divalent zinc, cadmium and mercury halides is reported together with some spectral and physical properties. The results of a crystallographic study allows to establish the structure of those of formula [M2(AH)2X4]H2O (M = Zn, Cd, Hg; X = Br, I) consisting of dimers and involving tetrahedral environment with sulphur-bridges for the metal atoms. Polymeric structures are proposed for the complexes of formulae Cd(AH)Cl2 and Hg2Cl4(AH).  相似文献   

17.
In Arbuzov-type reactions CFnCl3?nSCl reacts with ROPCl2 (R = CH3, C2H5) to give CFnCl3?nSP(O)Cl2 (n = 3,2,1,0). The corresponding reaction with CF3SeX (X = Cl, Br) produces CF3SeP(O)Cl2 in good yields only in the presence of catalysts such as SbCl5 or BCl3. Reactions between P4 and the sulfenylchlorides produce (CFnCl3?nS)xPCl3?n (n = 3,2,1 and x = 1,2). On heating CFn′ Cl3?n′ SP(O)Cl2 (n′ = 2,1,0) decompose to P(O)Cl3 and SCFn′ Cl2?n′. During this process fluorination of P(O)Cl3 to P(O)F3 by SCF2 is observed. A Cl/Br exchange between CFnCl3?nSP(O)Cl2 (n = 3,2) and PBr3 was proved 19F? and 31P-NMR-spectroscopically.Chemical and physical properties of the newly synthesized compounds will be discussed.  相似文献   

18.
Summary The following palladium(II) and platinum(ll) complexes of rhodanine (HRd) and 3-methylrhodanine (MRd) have been prepared: Pd(HRd)1.5Cl2, Pd(HRd)2Br2, Pd(HRd)2Br2 · 0.25 EtOH, M(MRd)2X2 [M = Pd, X = Cl (0.25 EtOH) or Br; M = Pt, X = Cl or Br], Pd(MRd)3Br2, and M(MRd)4(ClO4)2 (M = Pd or Pt). The ligands are coordinated to the metal through the thiocarbonylic sulphur atom. Pd(HRd)1.5Cl2 has presumably a structure such as (X = Cl or Br) complexes have a trans-planar coordination. Pd(MRd)2X2 (X = Cl or Br) complexes arecis-planar coordinated. Pd(MRd)3Br2 has presumably a square coordination with two MRd molecules and two CI ionscis-coordinated in the equatorial plane, and a MRd molecule and a Cl ion weakly bonded in apical position. The M(MRd)4(ClO4)2 complexes have square planar coordination.Author to whom all correspondence should be addressed.  相似文献   

19.
The electroreduction of the halofluoromethanes CF3Br, CF2Br2 and CF2BrCl has been studied in high‐pressure stainless steel autoclaves at different cathodes [Pt, steel (V2A, V4A), glassy carbon (GC)] and in various solvent‐supporting electrolyte systems (SSE), e.g. DMF/[Bu4N]Br, NMP/[Bu4N]BF4 etc. The reduction potentials for CF3Br increase from Pt (–1.6 V) < V2A (–1.8 V) < GC (–2.1 V) and are lower for CF2Br2 and CF2BrCl suggesting a reductive cleavage of C‐X bonds as the first step. CF2Br2 and CF2BrCl show a two‐step reduction in accord with the C–X bond energies (C–F > C–Cl > C–Br) and the “Perfluoro‐effect”. The electrolysis of CF3Br in different SSE‐systems with sacrificial zinc or cadmium anodes has been reinvestigated with our experimental set‐up to elucidate the influence of the experimental conditions on the type and ratio of the products. The observed products CF3MBr·42L and (CF3)2M·42L (M = Zn, Cd; L = DMF or AN) are the same as in the previous investigations, but are obtained in different ratios, as a rule caused by a parallel chemical corrosion of the respective anodes. By using aluminium as sacrificial anode no CF3Al compounds are formed. The CF3 species generated by electroreduction of CF3Br react with the solvents via hydrogen abstraction and formation of CF3H. The current yield with respect to the dissolution of the Al anode reaches 120 % indicating a considerable chemical corrosion in addition to the anodic oxidation. This result enabled a one‐pot trifluoromethylation reaction of NMP as organic carbonyl substrate and solvent with CF3Br and aluminium powder (ratio 3 : 2) at higher temperatures (> 70 °C). The complete reaction of CF3Br to give CF3H and 1‐methyl‐2‐trifluoromethyl‐4,5‐dihydropyrrol allowed the isolation of the latter by vacuum condensation and distillation in 45 % yield, rel. to the CF3Br used. Gallium and indium were also applied as sacrificial anodes in combination with CF3Br as substrate. In both cases, anodic current yields of about 280 % indicated an extreme chemical corrosion together with cathodic metal depositions corresponding to the cathodic current yield. These deposits – in contrast to those of Zn and Cd – do not react with CF3Br in Grignard‐type conversions to CF3Ga and CF3In compounds. So, the observed products (CF3)nMBr3–n·L (M = Ga, In; n 1‐3; L = DMF, NMP) are obviously formed by chemical corrosion of the electro‐activated anodes. Finally, electrochemical and chemical trifluoromethylations were successfully carried out, using R3SiCl (R = Me, Vi, Ph), Me3M′Cl (M′ = Ge, Sn) and aluminium anodes or Al‐powder. The products were characterized either after isolation or in the product solutions by NMR‐spectroscopic investigations.  相似文献   

20.
In order to know the relationship between structures and physicochemical properties of Group 12 metal(II) ions, the complexes with ‘simple’ ligands, such as alkyl cyclic diamine ligand and halide ions, were synthesized by the reaction of 1,4‐dimethylhomopiperazine (hp′) with MX2 as metal sources (M = Zn, Cd; X = Cl, Br, I). The five structural types, [ZnX2(hp′)] (X = Cl ( 1 ), Br ( 2 ) and I ( 3 )), [ZnX3(Hhp′)] (X = Cl ( 1′ ) and Br ( 2′ )), [CdCl2(hp′)]n ( 4 ), [{CdCl2(Hhp′)}2(µ‐Cl)2] ( 4′ ) and [{CdX(hp′)}2(µ‐X)2] (X = Br ( 5 ), I ( 6 )), were determined by X‐ray analysis. The sizes of both metal(II) and halide ions and the difference in each other's polarizability influence each structure. All complexes were characterized by IR, far‐IR, Raman and UV–Vis absorption spectroscopies. In the far‐IR and Raman spectra, the typical ν(M N) and ν(M X) peaks clearly depend on the five structural types around 540–410 cm−1 and 350–160 cm−1 respectively. The UV–Vis absorption band energy around 204–250 nm also reflects each structural type. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号