首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The synthesis of two novel allyl and diallyl vesicle-forming quaternary ammonium salts is reported. The topochemical polymerization of these monomeric vesicles to their polymerized counterparts was performed by γ-ray irradiation and the observed differentiation in polymerization rates of allyl and diallyl monomers was attributed to different polymerization mechanisms. It was further established that only polymerized vesicles which result from diallyl monomer retain the structure of the monomeric vesicles and exhibit simultaneously higher stability.  相似文献   

2.
Among nitrogen-containing cationic electrolytes, diallyl quaternary ammonium salt is a typical monomer with the highest positive charge density, which has attracted the most attention, especially in the research on homopolymers and copolymers of dimethyl diallyl ammonium chloride (DMDAAC), which occupy a very unique and important position. In order to improve the lipophilicity of substituted diallyl ammonium chloride monomers under the premise of high cationic charge density, the simplest, most direct, and most efficient structure design strategy was selected in this paper. Only one of the substituents on DMDAAC quaternary ammonium nitrogen was modified by alkyl; the substituents were propyl and amyl groups, and their corresponding monomers were methyl propyl diallyl ammonium chloride (MPDAAC) and methyl amyl diallyl ammonium chloride (MADAAC), respectively. The effect of substituent structure on the homopolymerization activity of methyl alkyl diallyl ammonium chloride was illustrated by quantum chemical calculation and homopolymerization rate determination experiments via ammonium persulfate (APS) as the initiator system. The results of quantum chemistry simulation showed that, with the finite increase in substituted alkyl chain length, the numerical values of the bond length and the charge distribution of methyl alkyl diallyl ammonium chloride monomer changed little, with the activation energy of the reactions in the following order: DMDAAC < MPDAAC < MADAAC. The polymerization activities measured by the dilatometer method were in the order DMDAAC > MPDAAC > MADAAC. The activation energies Ea of homopolymerization were 96.70 kJ/mol, 97.25 kJ/mol, and 100.23 kJ/mol, and the rate equation of homopolymerization of each monomer was obtained. After analyzing and comparing these results, it could be easily found that the electronic effect of substituent was not obvious, whereas the effect of the steric hindrance was dominant. The above studies have laid a good foundation for an understanding of the polymerization activity of methyl alkyl diallyl ammonium chloride monomers and the possibility of preparation and application of these polymers with high molecular weight.  相似文献   

3.
Two novel two‐tail surfactants, dicetyldimethylammonium 4‐vinyl benzoate (DDVB) and dicetyldimethylammonium 3,5‐divinyl benzoate (DDDB), were synthesized by neutralizing the corresponding quaternary ammonium hydroxide with the appropriate benzoic acid. As expected, these surfactants formed both homo and mixed‐vesicles, which were readily polymerized with a suitable radical photo‐initiator. The polymerization process was followed by UV–vis spectroscopy and also reconfirmed by NMR and IR spectroscopy. Polymerization of vesicles prepared from DDVB, unlike the more commonly polymerized vesicles, in which the polymerizable group forms an integral part of the surfactant, leads to the formation of a linear polyelectrolyte chain that is only electrostatically bound to the lipid bilayer. On the other hand, polymerization of DDDB vesicles leads to the formation of a crosslinked shell (or net) that encases the vesicle bilayer. Such counterion crosslinked vesicles were shown to be resistant to destabilization both by lysis as well as in the presence of a fairly high volume fraction of an organic solvent, such as ethanol. However, although the simple polymerized (linearly) vesicles, formed from DDVB, exhibit enhanced stability toward lysis when compared to their unpolymerized counterparts, they are readily destabilized in the presence of ethanol, leading to precipitation. This sharp contrast in the behavior of linearly polymerized and crosslinked systems suggests that crosslinking is essential to arrest conformational reorganization of the polyelectrolyte chains induced by a change in the solvent medium, which in turn leads to precipitation. Such counterion crosslinked vesicular systems also have an added advantage; they may retain the fluidityof the lipid bilayer while at the same time possess enhanced stability. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5271–5283, 2004  相似文献   

4.
Diallyl quaternary ammonium chlorides, bromides and N-alkyldiallylamine hydrochlorides were polymerized with ammonium persulfate (APS) in dimethyl sulfoxide (DMSO). The dependences of yield and molecular weight of polymers on polymerization conditions were examined and quaternary ammonium chlorides were found to have better polymerizability than bromides. The poly(diallyl quaternary ammonium chlorides) obtained with APS—DMSO system are expected to have quite high molecular weights, as determined from the measurement of limiting viscosity numbers of the polymers in NaCl aqueous solution.  相似文献   

5.
The synthesis of a novel vesicle-forming surfactant monomer, i.e., of di(undecenyl) phosphate is reported. Vesicles formed from this monomer were irradiated by γ rays for the production of polymeric vesicles. Polymerization was studied in conjunction with the model of the monomeric vesicles and the structure of the polymers was primarily studied with 1H-NMR spectra. It was further established that polymerized vesicles retain the structure of their monomeric counterparts while exhibiting higher stability than the unpolymerized vesicles.  相似文献   

6.
Monomer salts based on acrylic acids and guanidine—guanidine acrylate and methacrylate—have been synthesized, and the kinetic features of their free-radical polymerization in aqueous solutions have been studied. When polymerization is carried out in organic solvents (methanol, ethanol, or dioxane), the system is heterogeneous over the entire range of monomer concentrations. In aqueous solutions, the reaction systems are homogeneous only at small initial monomer concentrations (less than 1.30 and 0.40 mol/l for guanidine acrylate and methacrylate, respectively; the ammonium persulfate concentration is 5 × 10?3 mol/l; pH ~ 6.5; 60°C). At higher concentrations, microheterogeneity appears from small conversions (~1%). This phenomenon is associated with the coiling of growing polymer chains owing to associative interactions between guanidine groups occurring in the monomer solution and carboxyl groups of (meth)acrylate polymer units. In aqueous solutions over the entire range of monomer concentrations (0.2–2.5 mol/l), the kinetic orders are the same as in the case of corresponding acrylic acids. The effects of composition of reaction solutions on changes in the initial rate of polymerization and the conformational behavior of the systems under study have been ascertained.  相似文献   

7.
The bulk copolymerizations of monoallyl phthalate (MAP) with allyl benzoate (ABz) and diallyl phthalate (DAP) were conducted in the presence of benzoyl peroxide as an initiator at 70°C; copolymers containing allyl alcohol unit were obtained. The copolymer composition was reasonably interpreted in terms of polymerization kinetics, including the partial elimination of phthalic anhydride (PhA) from the MAP growing chain end in its propagation reaction with another monomer. Kinetics of the copolymerization of DAP with MAP were also discussed in detail, and the gel point was additionally evaluated. DAP–MAP copolymer was homogeneously reacted with zinc acetate to produce the polymer gel carrying ionic crosslinkages.  相似文献   

8.
2-Chloromethylbutadiene has been converted to quaternary ammonium and sulfonium monomers which have been polymerized at room temperature. They show a very great tendency to dimerize on heating in water solution. The aqueous quaternary monomer dimerized 25 times as fast as the aqueous sulfonium monomer and nearly 105 times as fast as neat isoprene at 50°C. The quaternary monomer dimerized with itself in a water solution to which 2-hydroxymethylbutadiene has been added as an example of a nonionic diene. The latter monomer did not dimerize rapidly in water, nor did 2-aminomethylbutadiene. The hydrochlorides of 2-aminomethylbutadiene and 2-dimethylaminomethylbutadiene dimerized at rates comparable to that of the sulfonium monomer. Poly 2-chloromethylbutadiene contains reactive chlorine except for the structure resulting from the minor extent of 1,2 addition. Water-soluble derivatives have been made from it with nucleophilic tertiary amines and sulfides. Cationic polymers are substantive to paper pulp, and the sulfonium polymers can be cured in paper to give improved wet strength.  相似文献   

9.
The polymerization of vinyl monomer initiated by an aqueous solution of poly(vinylbenzyltrimethyl)ammonium chloride (Q-PVBACI) was carried out at 85°C. Styrene, p-chlorostyrene, methyl methacrylate, and i-butyl methacrylate were polymerized, whereas acrylonitrile and vinyl acetate were not. The effects of the amounts of vinyl monomer, Q-PVBACI, and water on the conversion of vinyl monomer were studied. The overall activation energy in the polymerization of styrene was estimated as 79.1 kJ mol?1. The polymerization proceeded through a radical mechanism. The selectivity of vinyl monomer was discussed by “a concept of hard and soft hydrophobic areas and monomers.”  相似文献   

10.
Novel N‐methylbenzothiazolium salts [N‐methyl‐2‐benzylthiobenzothiazolium, N‐methyl‐2‐(4‐nitrobenzylthio)benzothiazolium, N‐methyl‐2‐(1‐ethoxycarbonylethylthio)benzothiazolium, and N‐methyl‐2‐methylthiobenzothiazolium hexafluoroantimonates] were synthesized by the reaction of the corresponding 2‐substituted benzothiazole with dimethylsulfate, followed by anion exchange with KSbF6. These benzothiazolium salts cationically polymerized an epoxy monomer by photoirradiation. They also polymerized an acrylate monomer via a photoradical process. The use of aromatic compounds such as 2‐ethyl‐9,10‐dimethoxyanthracene as photosensitizers was effective in enhancing the polymerization. These benzothiazolium salts also served as thermal cationic initiators. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3828–3837, 2003  相似文献   

11.
Polymerized liposomes and vesicles are under close scrutiny as long-lived, stable substitutes for their natural and synthetic unpolymerized counterparts. The monomer surfactant, which contains one or more polymerizable groups, is dispersed in water at the proper temperature and concentration to form the lyotropic liquid crystalline phase of interest and polymerized while in the liquid crystalline state. In addition to their applications to slow-release and site-specific drug delivery, membrane-mediated chemistry, artificial photosynthesis, etc., polymerized surfactant liposomes and vesicles hold great promise as model systems for TEM investigations of lamellar liquid crystal structure. One such model polymerizable surfactant is DBPAl, or N,N-dimethyl-N,N-bis(1,3-pentadecadienyl-carbonyloxyethyl) ammonium iodide. Polarized light microscopy and differential scanning calorimetry (DSC) confirm that DBPAI forms lamellar liquid crystalline liposomes in water. The DBPAI liposomes were polymerized while in the liquid crystalline state by ultraviolet (UV) irradiation. The DBPAI liposomes were shown to be identical in structure before and after polymerization by a combination of X-ray diffraction and freeze-fracture TEM. However, turbidity measurements showed that the polymerized DBPAI liposomes were much more stable in acetone and ethanol than the monomer DBPAI liposomes, demonstrating that the chemical nature of the surfactant in the liposome had changed. The combination of structural preservation and enhanced chemical stability makes DBPAI a natural choice for TEM thin-sections. A method of preparing DBPAI liposomes for thin-section TEM is outlined and bilayer resolution images of the DBPAI liposomes are presented. Polymerized bilayers in thin-section TEM promise the enhanced resolution required to answer many important structural questions left unresolved by freeze-fracture TEM.  相似文献   

12.
Radical polymerization studies on diallyl oxalate (DAO), diallyl malonate (DAM), diallyl succinate (DASu), diallyl adipate (DAA), and diallyl sebacate (DAS) have been conducted kinetically from the standpoint of cyclopolymerization. Benzoyl peroxide was employed as the initiator. The initial overall rate of polymerization, Rp was not proportional to the square root or the first power of the initiator concentration, [I]. But Rp/[I]1/2 and [I]1/2 bore a linear relationship, provided the monomer concentration was kept constant. The residual unsaturation of the polymers decreased with decreasing monomer concentration. The ratio of the rate constant of the unimolecular cyclization reaction to that of the bimolecular propagation reaction of the uncyclized radical, Kc, was evaluated from the above relationship between the residual unsaturation and the monomer concentration at 60°C. The Kc values obtained were 3.6, 3.2, 2.8, 2.5, and 1.2 mole/l. for DAO, DAM, DASu, DAA, and DAS, respectively. The overall activation energies of polymerization were found to be 21.1 (DAO), 24.2 (DAM), 21.7 (DASu), 22.0 (DAA), and 22.2 (DAS) kcal/mole.  相似文献   

13.
4-Acetamino-4'-methacryloylaminodiphenylmethane (AMDPM) monomer was synthesized from 4,4'-diaminodiphenylmethane via acetylation reaction and then reacted with methacryloyl chloride. AMDPM monomer was characterized by elemental analysis,1H-NMR and IR spectra. In the presence of 2,2'-azobisisobutyronitrile (AIBN) AMDPM polymerized and formed a brittle homopolymer. The copolymers of methyl acrylate(MA) with AMDPM in various molar ratio were synthesized via free radical polymerization in N,N-dimethylformamide solution.The monomer reactivity ratios were determined by Fineman-Ross method.  相似文献   

14.
A polymerized lyotropic liquid crystal monomer of sodium 3,4,5-tris(11-acryloxyundecyloxy)-benzoate was synthesized by a convenient route starting from 3,4,5-trihydroxybenzoic acid via esterification followed by etherification, acylation and finally neutralization. The chemi-cal structure was confirmed by Fourier transform infrared (FT-IR) and 1H nuclear magnetic resonance spectral analysis. The self-organization behavior of the monomer with deionized water in methanol at room temperature was also demonstrated. The assemblies were char-acterized by polarized optical microscope and X-ray diffraction. The results show that a solution containing 80:20 of the monomer to water was found to be able to self-organize into Lamellar (La) phase and 92:8 with inverted hexagonal (HII) phase, which was in ac-cordance with the theoretical calculation of critical packing parameter. It suggests that the concentration of the monomer was the key factor to influence assembly structure. Addi-tionally, the acrylate conversion with different photoinitiators and nanostructure retention after polymerization were investigated. The research shows that the acrylate conversion of the monomer with Darocur2959 could reach up to 78% when irradiated by 30 mW/cm2 UV light of 365 nm for 30 min characterized by Real-time FT-IR as well as the sol-gel method. Meanwhile, the La and HII phase nanostructures were both retained after polymerization.  相似文献   

15.
New polymer latexes bearing saccharide moieties on the particle surface were synthesized by using a water‐soluble sugar monomer, such as 1‐deoxy‐1‐methacryl‐amido‐D ‐glucitol, (MAG). All the latexes were prepared by a two‐stage emulsion polymerization technique. In the first step, the core was prepared with butyl acrylate (BA) and styrene (St). In the second step, the seed latex was polymerized with ethyl acrylate (EA) and MAG. The influence of a bifunctional monomer such as allyl methacrylate (ALMA), introduced at various concentrations, on the final latexes morphologies and properties was investigated. It was found that the latex particles exhibit a core‐shell structure. The mass balance of MAG showed that the main part of the sugar moiety is on the shell layer. The molecular properties, such as structure, composition, and molecular weight, were determined by elemental analysis, 1H‐ and 13CNMR spectroscopy. Colloidal (particle size and their distributions), thermal, and rheological properties were also studied. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
The effect of monomer micellization on the polymerization was studied from the standpoint of stereochemistry in the polymerization. Quaternary salts (CnBr) of dimethylaminoethyl methacrylate with n-alkyl bromide having N (=4, 8 and 12) carbon atoms were polymerized with radical initiators in isotropic and anisotropic media and the resulting polymers were converted to poly (methyl methacrylate) (PMMA) to determine their tacticity. Tacticities of poly (C12Br)s were little affected by initiators and solvents used for their preparations. There was little dependence of the tacticities on alkyl chain length (N) for poly (CnBr)s prepared in water and dimethylformamide (DMF). Most of polymers produced here conformed to Bernoullian propagation statistics and a definite difference was not found in the tacticities between the polymers prepared in isotropic and anisotropic media. From the results obtained here it was deduced that the micellar aggregation has little influence upon the stereochemistry in the polymerization of the quaternary monomers. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
The anionic polymerization of 2-ethylhexyl acrylate (EtHA) initiated with the complex butyllithium/lithium-tert-butoxide (BuLi/t-BuOLi) was investigated at ?60°C in a medium of various solvating power, i.e., in mixtures of toluene and tetrahydrofuran and in neat tetrahydrofuran. With increasing amount of THF in the mixture the attainable limiting conversion of polymerization decreases; the monomer can be polymerized quantitatively only in a toluene/THF mixture (9/1). Molecular weights of the polymers thus obtained, their distribution, and initiator efficiency are not appreciably affected by the polymerization medium. The molecular weight distribution of the products is medium-broad (Mw/Mn = 2–2.4), with a hint of bimodality. The 1H-13C-NMR, and IR spectra suggest that during the polymerization there is neither any perceptible reesterification of the polymer with the alkoxide nor transmetalation of the monomer with the initiator. In a suitable medium, autotermination of propagation proceeds to a limited extent only, predominantly via intramolecular cyclization of propagating chains; in a medium with a higher content of polar THF, it prevails and terminates propagation before the polymerization of the monomer has been completed. © 1992 John Wiley & Sons, Inc.  相似文献   

18.
In this study, a novel, highly efficient and environmentally friendly flocculant, namely, cationic starch-grafted-cationic polyacrylamide (CS-g-CPAM), was synthesized by initiation polymerization of ammonium persulfate. First, CS-g-CPAM was polymerized with cationic starch(CS), acrylamide(AM) and diallyl dimethyl ammonium chloride (DMDAAC), and then the influence factors of graft polymerization were investigated, including total monomer concentration, initiator dosage, the monomer mass ratio of mAM: mCS: mDMDAAC, post-polymerization temperature and post-polymerization time. And the intrinsic viscosity of the CS-g-CPAM was measured by the one point method accurately. The chemical structures and morphology of the samples were characterized by Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermo-gravimetric and differential scanning calorimetry (TG-DSC), and scanning electron microscope (SEM). The CS-g-CPAM was utilized to flocculate the oil sludge suspension, the effects of CS-g-CPAM dosage, temperature and pH value on the flocculation performance were investigated. The results show that CS-g-CPAM has outstanding flocculation effect.  相似文献   

19.
Peroxidized polypropylene has been used as a heterofunctional initiator for a two-step emulsion polymerization of a vinyl monomer (M1) and vinyl chloride with the production of vinyl chloride block copolymers. Styrene, methyl-, and n-butyl methacrylate and methyl-, ethyl-, n-butyl-, and 2-ethyl-hexyl acrylate have been used as M1 and polymerized at 30–40°C. In the second step vinyl chloride was polymerized at 50°C. The range of chemical composition of the block copolymers depends on the rate of the first-step polymerization of M1 and the duration of the second step; e.g., with 2-ethyl-hexyl acrylate block copolymers could be obtained with a vinyl chloride content of 25–90%. The block copolymers have been submitted to precipitation fractionation and GPC analysis. Noteworthy is the absence of any significant amount of homopolymers, as well as poly(M1)n as PVC. The absence of homo-PVC was interpreted by an intra- and intermolecular tertiary hydrogen atom transfer from polypropylene residue to growing PVC sequences. The presence of saturated end groups on the PVC chains is responsible for the improved thermal stability of these block polymers, as well as their low rate of dehydrochlorination (180°C). Molecular aggregation in solution has been shown by molecular weight determination in benzene and tetrahydrofuran.  相似文献   

20.
Abstract

The comprehensive polymerization mechanism of the nitrogen-containing cycles 1-azobicyclo (3,1,0)-hexane (ABH), conidine, quinuclidine, and triethylenediamine under the action of quaternary ammonium salts, ammonium salts, and BF3 complex with conidine is studied. Polymerization is of the living polymers type, and the active centers of monomer polymerization are ions and ion pairs: the activity of the latter is comparable to and exceeds that of the free ions. The effects of the nature of the counterion, cation, and medium polarity on the reaction rate are investigated. The polymerization rate is found to depend on the nature of the counterion in the polymerization of ion pairs, but not to depend on the counterion in the polymerization of free ions. The reaction rate is proportional to the counterion size in the polymerization of ion pairs. In the case of conidine K+ = 0.2, K±(Cl?) = 0.28, K±(Br?) = 0.36, K±(I?) = 0.51, and K±(ClO4 ?) = 0.62 (liter)/(mole)(min). The heats of nitrogen-cyclic polymerization are measured and correlated with the activation energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号