首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The solution polymerization of vinyl acetate was carried out in several solvents at 0 to 100°C, using 2,2′-azobisisobutyronitrile as initiator. For the resulting poly(vinyl alcohol) (PVA), iodinecoloration, 1,2-glycol structure and tacticity were observed. The pentad tacticity of PVA was estimated from its methine carbon spectra by means of 13C-FTNMR spectrometer. Iodine-coloration ability of PVA varied markedly with the type of polymerization solvent and decreased in the following order: phenol > aq. phenol > methyl alcohol > ethyl acetate > DMSO, ethylene carbonate. The syndiotactic fraction in PVA also decreased with polymerization solvent in the same order as that of iodine coloration, while 1,2-glycol content of PVA was not almost affected by polymerization solvent except for phenol and aq. phenol. In solution polymerization performed, effect of polymerization temperature on tacticity was less than that of solvent.  相似文献   

2.
Free-radical polymerization of vinyl esters including vinyl propionate (VPr), vinyl isobutylate (ViBu), vinyl 2,2-dimethylbutylate (VDMB), vinyl 2,2-dimethylvalerate (VDMV), vinyl 2,2-bis(trifluoromethyl)propionate (VF6Pi), and vinyl benzoate (VBz) was carried out using fluoroalcohols as solvents, and the tacticity of the obtained polymers was determined by NMR analysis of the produced poly(vinyl alcohol) (PVA). The polymerization of VPr, ViBu, VDMB, and VDMV, which are bulkier than VAc, in fluoroalcohols afforded polymers rich in heterotacticity (up to mr = 61%) similar to that of vinyl pivalate (VPi) whereas VAc is known to give a syndiotactic polymer under the reaction conditions used here. The polymerization of VF6Pi, which is the bulkiest among the monomers used in this study, gave a polymer rich in syndiotacticity in bulk and in fluoroalcohols regardless of the structure of the solvents. On the other hand, the polymerization of VBz in fluoroalcohols gave polymers with a higher isotacticity (up to mm = 33%) than bulk polymerization. Thus the monomer structure strongly affected the stereochemistry of the free-radical polymerization of vinyl esters in fluoroalcohols. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2677–2683, 1999  相似文献   

3.
To prepare ultrahigh molecular weight (UHMW) poly(vinyl pivalate) (PVPi) with high conversion and high linearity for a precursor of syndiotacticity-rich UHMW poly(vinyl alcohol) (PVA), vinyl pivalate (VPi) was suspension polymerized using a low-temperature initiator, 2,2'-azobis(2,4-dimethylvaleronitrile) (ADMVN), and the effects of polymerization conditions on the polymerization behavior and molecular structures of PVPi and PVA prepared by saponifying PVPi were investigated. Suspension polymerization was slightly inferior to bulk polymerization in increasing the molecular weight of PVA. In contrast, the former was superior in increasing the conversion of the polymer. Suspension polymerization of VPi at 25 °C by controlling various polymerization factors proved to be successful in obtaining PVA of UHMW (number-average degree of polymerization (Pn): 14,700-16,700), high syndiotactic diad content (62%), and of high yield (ultimate conversion of VPi into PVPi: 85-90%). In the case of bulk polymerization of VPi under the same conditions, maximum Pn, conversion of 15,800-17,000, and 25-35% were obtained, respectively. The degree of branching was lower and the Pn and syndiotacticity were higher with PVA prepared from PVPi polymerized at lower temperatures. All PVAs from PVPi suspension-polymerized at 25 °C were fibrous, with a high degree of crystallinity and orientation of the crystallites.  相似文献   

4.
The high resolution nuclear magnetic resonance spectrum of poly(vinyl formate), yielded, upon examination at 100 Mc./sec., and under the conditions of decoupling, information on the three tactic forms present. The normal and decoupled spectra indicate that only the CHO resonance is sensitive to the stereochemical configuration. The three components of the CHO resonance are tentatively assigned to isotactic (i), heterotactic (h), and syndiotactic (s) triads with increasing field strength, respectively. This assignment was made on the basis of poly(vinyl alcohol) and poly(vinyl acetate) derived from poly(vinyl formate). The results show that the tacticity is slightly dependent upon the temperature of free-radical polymerization.  相似文献   

5.
Bulky substituents in vinyl trialkylsilyl ethers and vinyl trialkylcarbinyl ethers led to heterotactic polymers (H = 66%). The polymers were converted into poly(vinyl alcohol) (PVA) and further to poly(vinyl acetate), and tacticity was determined as poly(vinyl acetate). Vinyl triisopropylsilyl ether in nonpolar solvents yielded a heterotactic polymer with a higher percentage of isotactic triads than syndiotactic triads (Hetero-I). Vinyl trialkylcarbinyl ethers in polar solvents gave a heterotactic polymer with more syndiotactic triads than isotactic (Hetero-II). Heterotactic PVA was soluble in water and showed characteristics infrared absorptions. Interestingly, Hetero-I PVA showed no iodine color reaction, but Hetero-II showed a much more intense color reaction than a commercial PVA. The mechanism of heterotactic propagation was discussed in terms of the Markóv chain model.  相似文献   

6.
The stereospecific radical polymerization of vinyl esters, methacrylates, and alpha-substituted acrylates was studied. Fluoroalcohols, as a solvent, have remarkable effects on the stereoregularity of the radical polymerizations of vinyl acetate, vinyl pivalate, and vinyl benzoate, affording polymers rich in syndiotacticity, heterotacticity, and isotacticity, respectively. This method was successfully applied to the polymerization of methacrylates to give syndiotactic polymers. The steric repulsion between the entering monomer and the chain-end monomeric unit bound by the solvent through hydrogen bonding is important for the stereochemical control in these systems. Lewis acid catalysts, such as lanthanide trifluoromethanesulfonates and zinc salts, were also effective for the stereocontrol during the radical polymerization of methyl methacrylate, to reduce the syndiotacticity and alpha-(alkoxymethyl)acrylates to synthesize isotactic and syndiotactic polymers. Radical polymerization of the methacrylates bearing a bulky ester group, such as the triphenylmethyl methacrylate derivatives, gave highly isotactic polymers, as in the case of anionic polymerization. In addition, the control of one-handed helical conformation was attained in the radical polymerization of 1-phenyldibenzosuberyl methacrylate using chiral neomenthanethiol or cobalt(II) complexes as an additive.  相似文献   

7.
We report here a successful free-radical dispersion polymerization of vinyl pivalate (VPi) in an ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([bmim][TFSI]) using poly(vinyl pyrrolidone) (PVP) as a stabilizer. Morphological analysis by FE-SEM revealed that poly(vinyl pivalate) (PVPi) obtained from dispersion polymerizations were in the form of spherical particles. Micron-sized, PVPi particles with a number-average molecular weight (Mn) of 166,400 g/mol could be obtained using 5% stabilizer (w/w to monomer) at 65 °C for 20 h. The effects of varying concentration of stabilizer, initiator and monomer upon polymer yield, molecular weight, and morphology of PVPi were also investigated. Analogous polymerizations in dimethyl sulfoxide (DMSO) and bulk served as references. In addition, the preparation of poly(vinyl alcohol) (PVA) by saponification of the resultant PVPi was described.  相似文献   

8.
聚合温度对聚甲基丙烯酸三丁基锡酯等规度的影响(Ⅰ)   总被引:1,自引:0,他引:1  
本文测定了0—130℃温度范围内,由~(60)Co-γ射线和两种活性不同的引发剂引发聚合的聚甲基丙烯酸三丁基锡酯的等规度。利用~(13)C-NMR测定聚合物分子链的等规度,如预料的那样,以间同立构为主,并随着聚合温度的升高间同立构等规度降低。作者认为影响聚合物等规度的因素主要是取代基的极性效应。计算出的控制等规度的活化能参数与聚甲基丙烯酸甲酯和聚甲基丙烯酸三甲基锡酯的属同一数量级,可相互比较。  相似文献   

9.
Cobalt‐mediated radical polymerizations (CMRPs) utilizing redox initiation are demonstrated to produce poly(vinyl ester) homopolymers derived from vinyl pivalate (VPv) and vinyl benzoate (VBz), and their block copolymers with vinyl acetate (VAc). Combining anhydrous Co(acac)2, lauroyl peroxide, citric acid trisodium salt, and VPv at 30 °C results in controlled polymerizations that yield homopolymers with Mn = 2.5–27 kg/mol with Mw/Mn = 1.20–1.30. Homopolymerizations of scrupulously purified VBz proceed with lower levels of control as evidenced by broader polydispersities over a range of molecular weights (Mn = 4–16 kg/mol; Mw/Mn = 1.34–1.65), which may be interpreted in terms of the decreased nucleophilicity of these less electron donating propagating polymer chain ends. Based on these results, we demonstrate that sequential CMRP reactions present a viable route to microphase separated poly(vinyl ester) block copolymers as shown by small‐angle X‐ray scattering analyses. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

10.
The solubility properties of poly(vinyl alcohol) (PVA) vary with the method of preparation of the poly(vinyl acetate) (PVAc) from which it is derived. PVAc was prepared with free-radical catalysts over a range of temperatures from ?78 to 90°C. with solvents of varying chain-transfer ability. The corresponding PVA samples varied in their resistance to dissolution in water. Their high-resolution proton nuclear magnetic resonance spectra showed on differences in tacticity. Data on 1,2-diol content showed only minor differences. Hence, the increase in resistance of PVA to dissolution in water arising from changes in chain-transfer activity of the solvent used in vinyl acetate polymerization is largely attributable to a decrease in molecular weight, and the increase in resistance of PVA to dissolution in water arising from a decrease in the temperature of the vinyl acetate polymerization is largely attributable to a decrease in both long and short branches. Evidently, with polar polymers having small side groups, tacticity is not the only factor influencing property variation; that is, variations in stereoregularity influence more the crystallinity of the sample as measured by density or x-ray methods than the ultimate crystallizability under conditions of mechanical and thermal treatment. In this regard polar polymers having small side groups differ from nonpolar polymers.  相似文献   

11.
Poly(vinyl alcohols) derived from the product of polymerization of vinyl acetate in methanol have been characterized by various physical and chemical methods before and after NaIO4 cleavage. The 220-MHz 1H-NMR spectra confirm the reliability of NaIO4 titrimetry for estimating 1,2-glycol content and help explain the tendency for viscometry to grossly underestimate the 1,2-glycol content for low molecular weight polymers. The spectra and related chemical evidence indicate that the major endgroups are HOCH2CH2? and CH3CH(OH)CH(OH)CH2? . ß-Hydroxyethyl groups also occur as short chain branches, mainly attached to α carbon atoms in the normal head-to-tail polymer chain sequence. The concentrations of the branch and endgroups depend on polymerization conditions and help explain polymerization “solvent” effects on physical properties.  相似文献   

12.
The role of grafting in particle nucleation during the emulsion polymerization of vinyl acetate with partially hydrolyzed poly(vinyl alcohol) (PVA) as an emulsifier and potassium persulfate as an initiator was investigated. The polymerizations were carried out in batch with a low solids (10%) recipe. An automated reaction calorimeter (Mettler RC1) was used for the direct monitoring of the kinetics of emulsion polymerizations with three medium molecular weight PVAs differing in their degrees of blockiness (Poval 217EE > 217E > 217). Smith–Ewart case 1 kinetics (average number of free radicals per particle < 0.5) were followed in all cases, and no constant rate in interval II was observed. Contrary to what was expected, a nonlinear relationship was observed between the rate of polymerization (Rp) and the number of particles (Np). At Rp max, Np (217E) > Np (217EE) > Np (217), and the final Np was independent of the degree of blockiness of PVA. The particle size distributions were broad (particle diameter = 20–100 nm) and bimodal. On the basis of these data, we concluded that particle nucleation was continuous and was accompanied by extensive limited aggregation during the particle growth stages. The evolution of the amounts of grafted PVA and poly(vinyl acetate) (PVAc) were determined in polymerizations employing the two PVAs differing the most in blockiness (Poval 217EE and 217). The grafted PVAc followed similar profiles, increasing with conversion, particularly near the end of the two reactions. The amounts of grafted PVAc were about the same in the final latexes (37–39%). In contrast, the grafting of PVA was nearly complete by the time monomer droplets had disappeared in each reaction (25% conversion). However, the extent of grafting differed significantly, with the blockier PVA having about one‐third the grafting of the more random PVA (~10% vs ~30%). In these low solids recipes, grafting appeared to be primarily a solution event, occurring predominantly in the aqueous phase and not at the particle/water interface, as was previously speculated. The PVAc grafts grew until the molecules became water‐insoluble and precipitated, forming polymer particles. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3633–3654, 2001  相似文献   

13.
It is a common view that poly(vinyl acetate) has many branches at the acetyl side group, but that the corresponding poly(vinyl alcohol) has little branching. In order to study the branching in poly(vinyl acetate) and poly(vinyl alcohol) which is formed by chain transfer to polymer, the polymerization of 14C-labeled vinyl acetate in the presence of crosslinked poly(vinyl acetate), which was able to be decrosslinked to give soluble polymers, was investigated at 60°C and 0°C. This system made it possible to separate as well as to distinguish the graft polymer from the newly polymerized homopolymer. Furthermore, the degree of grafting onto the acetoxymethyl group and onto the main chain were estimated. It became clear that, in the polymerization of vinyl acetate, chain transfer to the polymer main chain takes place about 2.4 times as frequently at 60°C as that to the acetoxy group and about 4.8 times as frequently at 0°C.  相似文献   

14.
Three novel functionalized polynorbornenes (PNB) with pendant dimethyl carboxylate group (carboxylates—acetate, propionate, and butyrate) are synthesized as a vinyl‐type with a palladium (II) catalyst in high yield. The effects of size of substitutents, molar ratio of monomer to catalyst, solvent polarity, reaction time, and temperature on the polymerization of exo‐norbornene dimethyl propionate were systematically investigated. The low molar ratio and temperature, as well as high polarity of solvent, and long reaction time, are favorable for the enhancement of the monomer conversion, especially, the solvent have an obvious effect on the catalyst activity. The resulting poly(cis‐norbornene‐exo‐2,3‐dimethyl carboxylates) (PNB‐dimethyl carboxylates) show good solubility in common organic solvent and high thermal stability up to 360 °C. The glass transition temperature was detected by DMA at 331, 324, and 318 °C for acetate, propionate, and butyrate, respectively. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3391–3399, 2007  相似文献   

15.
A pyrolysis–gas chromatography–mass spectrometric technique has been developed to study the thermal degradation of poly(vinyl chlorides) polymerized at different temperatures. Hydrogen chloride and benzene evolution during successive stages of pyrolysis have been quantitatively determined and correlated to the tacticity and molecular weight of the polymer. It was found that lowering the temperature of polymerization and molecular weight depresses benzene evolution and increases char weight but does not affect the HCl yield. It is suggested that the syndiotactic trans microstructure favored at low temperature of polymerization yields polyenes which cannot cyclize to form benzene. As the molecular weight decreases, the increase in number of vinyl chain ends facilitates pyrolytic crosslinking and char formation.  相似文献   

16.
The particle size distributions of poly(vinyl pivalate) (PVPi) produced from low‐temperature suspension polymerization of vinyl pivalate (VPi) with 2,2′‐azobis(4‐methoxy‐2,4‐dimethylvaleronitrile) (AMDMVN) as an initiator have been studied. By controlling various synthesis parameters, near‐monodisperse PVPi microspheres from 100 to 400 μm were obtained that are expected to be precursors of near‐monodisperse syndiotactic poly(vinyl alcohol) (PVA) microspheres for biomedical embolic applications. The mean particle diameter follows the relationship: the volume average diameter, DvadY0.26[VPi]0.52[AMDMVN]?0.25[PVA]0.40T?8.35Rpm?0.67, where Y, [VPi], [AMDMVN], [PVA], T, and Rpm are the fractional conversion, concentrations of VPi, AMDMVN, and suspending agent, polymerization temperature, and agitation speed during the polymerization of VPi, respectively. The polydispersity of the particle size distribution of PVPi decreased with decreasing conversion, [AMDMVN], T, and Rpm and with increasing [VPi]. In the case of [PVA], optimization of the suspension stability led to a narrow particle size distribution. Ultrahigh‐molecular‐weights PVPi and PVA (number‐average degrees of polymerization of PVPi (25,000–32,000) and PVA (14,000–17,500), of high syndiotactic diad content (63%), and of high ultimate conversion of VPi into PVPi (85–95%) were obtained by suspension polymerization at 10 °C, followed by saponification. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 789–800, 2005  相似文献   

17.
Absolute rate constants of the vinyl benzoate polymerization have been measured by use of the intermittent illumination method in various aromatic solvents and ethyl acetate at 30°C. The determination of absolute rate constants showed that effects of solvent on the polymerization rate of vinyl benzoate were mainly ascribed to the variation of kp values with solvents rather than that of kt values. The kp values for solvents used increased in the order: benzonitrile < ethyl benzoate < anisole < chlorobenzene < benzene < fluorobenzene < ethyl acetate. There was an eightfold difference between the largest and the smallest values The large variation among kp values was explained neither by the copolymerization through solvents nor the chain transfer to solvents, but by a reversible complex formation between the propagating radical and aromatic solvents. This explanation was supported by a correlation between kp values and calculated delocalization stabilizations for the complexes.  相似文献   

18.
Polymerization of vinyl acetate (VAc) in various fatty acids (carbon numbers 4–18) was carried out. Chain transfer constants to the acids were determined to be 20–35×10–4, from which the constant to a methylene group was obtained to be 0.73×10–4. Viscometry in aqueous solution of derived poly (vinyl alcohol) (PVA) showed the usual behavior in terms of Huggins constant obtained by the Schulz–Blaschkes equation for PVAs derived from fatty acid systems lower than hexadecanoic acid. PVA derived from octadecanoic acid system showed abnormality, indicating association of alkyl groups. Contact angles on surfaces of PVAs cast from aqueous solutions were measured. While those of PVA derived from lower acid systems were 62°, those of PVAs derived from higher aids were higher and increased to 92° with increase in carbon number to octadecanoic acid. Alkyl groups in the PVAs were estimated to appear on the surfaces. Surface tension of aqueous solution of the PVA derived from octadecanoic acid showed high surface activity, and depended on pH of the solution, indicating the presence and cleavage of lactone ring at the combined portion between PVA and the acid.  相似文献   

19.
Free‐radical copolymerizations of vinyl acetate (VAc = M1) and other vinyl esters (= M2) including vinyl pivalate (VPi), vinyl 2,2‐bis(trifluoromethyl)propionate (VF6Pi), and vinyl benzoate (VBz) with fluoroalcohols and tetrahydrofuran (THF) as the solvents were investigated. The fluoroalcohols affected not only the stereochemistry but also the polymerization rate. The polymerization rate was higher in the fluoroalcohols than in THF. The accelerating effect of the fluoroalcohols on the polymerization was probably due to the interaction of the solvents with the ester side groups of the monomers and growing radical species. The difference in the monomer reactivity ratios (r1, r2) in THF and 2,2,2‐trifluoroethanol was relatively small for all reaction conditions and for the monomers tested in this work, whereas r1 increased in the VAc‐VF6Pi copolymerization and r2 decreased in the VAc‐VPi copolymerization when perfluoro‐tert‐butyl alcohol was used as the solvent. These results were ascribed to steric and monomer‐activating effects due to the hydrogen bonding between the monomers and solvents. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 220–228, 2000  相似文献   

20.
The dynamic shear behavior of four highly amorphous polymers in the unstretched and stretched states (draw ratios 3:1 to 6:1) was investigated with a torsion pendulum at temperatures from 4.2°K to 180–300°K and frequencies from 0.4 to 3.2 cps. The polymers studied were polystyrene, poly(vinyl acetate), poly(vinyl propionate), and poly(isobutyl vinyl ether). Previously unreported loss maxima were found at 48°K (1.5 cps) and 149°K (1.3 cps) for poly(vinyl proplonate), at 10°K (1.0 cps) for poly(vinyl acetate) and at 9°K (1.6 cps) for poly(isobutyl vinyl ether). Uniaxial orientation increased the shear storage modulus G, measured with the torsion axis parallel to the stretch direction and caused changes in the loss peaks which depended on the polymer material studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号