首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Since the initial discovery in 1977, that polyacetylene (CH)x, now commonly known as the prototype conducting polymer, could be p‐ or n‐doped either chemically or electrochemically to the metallic state, the development of the field of conducting polymers has continued to accelerate at an unexpectedly rapid rate and a variety of other conducting polymers and their derivatives have been discovered. Other types of doping are also possible, such as “photo‐doping” and “charge‐injection doping” in which no counter dopant ion is involved. One exciting challenge is the development of low‐cost disposable plastic/paper electronic devices. Conventional inorganic conductors, such as metals, and semiconductors, such as silicon, commonly require multiple etching and lithographic steps in fabricating them for use in electronic devices. The number of processing and etching steps involved limits the minimum price. On the other hand, conducting polymers combine many advantages of plastics, for example, flexibility and processing from solution, with the additional advantage of conductivity in the metallic or semiconducting regimes; however, the lack of simple methods to obtain inexpensive conductive polymer shapes/patterns limit many applications. Herein is described a novel, simple, and cheap method to prepare patterns of conducting polymers by a process which we term, “Line Patterning”.  相似文献   

3.
A modular approach toward the synthesis of polymers containing dendron groups as side chains is developed using the Diels–Alder “click” reaction. For this purpose, a styrene‐based polymer appended with anthracene groups as reactive side chains was synthesized. First through third‐generation polyester dendrons containing furan‐protected maleimide groups at their focal point were synthesized. Facile, reagent‐free, thermal Diels–Alder cycloaddition between the anthracene‐containing polymer and latent‐reactive dendrons leads to quantitative functionalization of the polymer chains to afford dendronized polymers. The efficiency of this functionalization step was monitored using 1H and 13C NMR spectroscopy and FTIR and UV–vis spectrometry. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 410–416, 2010  相似文献   

4.
Light-emitting electroluminescent diodes and electrochemically-driven electroluminescent devices involving conjugated polymers are described. The effect on the properties of polypyrrole films (deposited from aqueous polymerizing solutions of pyrrole) caused by the hydrophilicity/hydrophobicity of the substrate surface is utilized by a “microcontact printing” technique to form patterned liquid crystal display devices.  相似文献   

5.
Polymers substituted with thio groups are useful for the photochemical synthesis of graft copolymers. Such copolymers have been prepared by the initial conversion of backbone polymers containing chlorinated substituents into polymers containing diethyldithiocarbamate (TC), isopropyl xanthate (IX) or mercaptobenzothiazole (BT) functionality. The photochemical reaction of monomers with these products produced graft copolymers. A variety of halogenated polymers were investigated as starting materials for these syntheses, including poly(vinyl chloride), chlorinated polyvinyl chloride), chlorinated polyethylene, chlorobutyl rubber and neoprene. Characteristics of the grafting reactions, including “pseudo-living” behavior and tandem grafting aspects, were investigated. Glass transitions of the grafted polymers were found to vary uniformly with composition for most of the grafted products.  相似文献   

6.
The origin of life is one of the fundamental questions in science. Eschenmoser proposed the “glyoxylate scenario”, in which plausible abiotic synthesis pathways were suggested to be compatible with the constraints of prebiotic chemistry. In this proposal, the stem compound is HCN. In this work, we explore the “glyoxylate scenario” through several syntheses of HCN polymers, paying particular attention to the role of the aqueous aerosols, together with statistical methods, as a step to elucidate the synthetic problem of the origin of life. The soluble and insoluble HCN polymers synthetized were analyzed by GC‐MS. We identified, for the first time, glyoxylic acid in these polymers, together with some constituents of the reductive tricarboxylic acid cycle, amino acids and several N‐heterocycles. The findings presented herein, as the first global approach to the “glyoxylate scenario”, give full effect to this hypothesis and prove that aqueous aerosols could play an important role in this plausible scene of the origin of life.  相似文献   

7.
One can define “intelligent” polymers as those polymers which respond with large property changes to small physical or chemical stimuli. These polymers may be in various forms, such as in solution, on surfaces, or as solids. One may also combine “intelligent” aqueous polymer systems with biomolecules, to yield a large family of polymers which respond “intelligently” to physical, chemical or biological stimuli. This article overviews such interesting and versatile polymer systems.  相似文献   

8.
We report on the first synthesis of a heterostructured semiconductor tetrapod from CdSe@CdS that carries a single dipolar nanoparticle tip from a core–shell colloid of Au@Co. A four‐step colloidal total synthesis was developed, where the key step in the synthesis was the selective deposition of a single AuNP tip onto a CdSe@CdS tetrapod under UV‐irradiation. Synthetic accessibility to this dipolar heterostructured tetrapod enabled the use of these as colloidal monomers to form colloidal polymers that carry the semiconductor tetrapod as a side chain group attached to the CoNP colloidal polymer main chain. The current report details a number of novel discoveries on the selective synthesis of an asymmetric heterostructured tetrapod that is capable of 1D dipolar assembly into colloidal polymers that carry tetrapods as side chain groups that mimic “giant tert‐butyl groups”.  相似文献   

9.
A new approach was developed for synthesis of certain A3B3‐type of double hydrophilic or amphiphilic miktoarm star polymers using a combination of “grafting onto” and “grafting from” methods. To achieve the synthesis of desired miktoarm star polymers, acetyl protected poly(ethylene glycol) (PEG) thiols (Mn = 550 and 2000 g mol?1) were utilized to generate A3‐type of homoarm star polymers through an in situ protective group removal and a subsequent thiol–epoxy “click” reaction with a tris‐epoxide core viz. 1,1,1‐tris(4‐hydroxyphenyl)ethane triglycidyl ether. The secondary hydroxyl groups generated adjacent to the core upon the thiol–epoxy reaction were esterified with α‐bromoisobutyryl bromide to install atom transfer radical polymerization (ATRP) initiating sites. ATRP of N‐isopropylacrylamide (NIPAM) using the three‐arm star PEG polymer fitted with ATRP initiating sites adjacent to the core afforded A3B3‐type of double hydrophilic (PEG)3[poly(N‐isopropylacrylamide)] (PNIPAM)3 miktoarm star polymers. Furthermore, the generated hydroxyl groups were directly used as initiator for ring‐opening polymerization of ε‐caprolactone to prepare A3B3‐type of amphiphilic (PEG)3[poly(ε‐caprolactone)]3 miktoarm star polymers. The double hydrophilic (PEG)3(PNIPAM)3 miktoarm star polymers showed lower critical solution temperature around 34 °C. The preliminary transmission electron microscopy analysis indicated formation of self‐assembly of (PEG)3(PNIPAM)3 miktoarm star polymer in aqueous solution. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 146–156  相似文献   

10.
The copper (I)‐catalyzed azide‐alkyne cycloaddition “click” reaction was successfully applied to prepare well‐defined 3, 6, and 12‐arms polystyrene and polyethylene glycol stars. This study focused particularly on making “perfect” star polymers with an exact number of arms, as well as developing techniques for their purification. Various methods of characterization confirmed the star polymers high purity, and the structural uniformity of the generated star polymers. In particular, matrix‐assisted laser desorption ionization‐time‐of‐flight mass spectrometry revealed the quantitative transformation of the end groups on the linear polymer precursors and confirmed their quantitative coupling to the dendritic cores to yield star polymers with an exact number of arms. In addition to preparing well‐defined polystyrene and poly(ethylene glycol)homopolymer stars, this technique was also successfully applied to amphiphilic, PCL‐b‐PEG star polymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
The structure and stereochemistry of four synthetic “angular” tetraflavanoid-condensed tannin derivatives are examined by high-resolution variable temperature 1H NMR. spectroscopy, and hence correlated with their dynamic behavior. Three “angular” oligomers exist as stable rotational isomers at ambient temperatures, thus contrasting with the mobility about their interflavanoid bonds of most natural profisetinidin “trimeric” and “tetrameric” homologs. A “linear” tetraflavanoid analog results from one of these regioselectively controlled condensations.  相似文献   

12.
This highlight summarizes recent attempts and advances of macromolecular sciences to abstract the biological concept of regulation and import it into synthetic polymer systems. The differences of “responsive switching” exploited in smart polymers and “regulation” present in the biological world of proteins are evident. Therefore, the biomimetic regulation might advance the possibilities of polymer science beyond these of established “smart polymers” and makes precise regulation of functions through signaling events, signal transduction and even complex regulative circuits possible. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1–14, 2010  相似文献   

13.
At first, theoretical aspects of “a2+b4” polycondensations (meaning polycondensations of difunctional and tetrafunctional monomers) are discussed and compared with what is known about “a2+b3” polycondensations. The following review of experimental results is subdivided into three sections. First, syntheses of hyperbranched polyethers and polyesters by polycondensations based on equimolar feed ratios will be reported. Second, kinetically controlled (i.e., irreversible) syntheses of multicyclic polymers using equifunctional feed ratios (i.e., a2/b4 ratios of 2:1) will be described. In the third section, syntheses of multicyclic polymers via thermodynamically controlled (reversible) “a2+b4” polycondensations will be discussed. Characteristic for these polycondensations are again equifunctional feed ratios and metal alkoxides as “a2” or “b4” monomers, which catalyze rapid equilibration reactions. Finally, potential applications of the new polymers will shortly be mentioned. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1971–1987, 2009  相似文献   

14.
On the Polymolybdate Types Occurring at High Degrees of Acidification, with Particular Reference to the “Decamolybdates” and “Phase C” Polymolybdates It is shown that in the range of high acidification (> 1.6H+/MoO42?) of aqueous molybdate solutions only two types of solid polymolybdates occur, namely the 36-molybdate and the “decamolybdate” types. These types can be most conveniently identified by their Raman spectra and also by some other characteristics. All the other polymolybdate types proposed in the literature for this range of acidification (“hexamolybdates”, “octamolybdates”, “dodecamolybdates”, “16-molybdates”, a 19-molybdate, the large group of polymolybdates characterized by a wide range of b in the general formula M2O · bMoO3 · cH2O, “phase C” polymolybdates, a “hexagonal hydrate of molybdenum trioxide”, a “reactive molybdic acid”, “NH3(MoO3)3”, and others) can be assigned to one of these two types. The most important reason for the erroneous assignments in the literature is the isomorphous exchange of varying quantities of the alkali or alkaline earth metal cations by H3O+ in the crystal structure, occurring in the highly acidic solutions, particularly with the small cations. This cannot be recognized by the presently available methods of investigation and, hence, leads to the creation of new polymolybdate types. Another reason causing some of the confusion is the assignment of virtually identical X-ray diffraction data to two different types of lattices, a hexagonal and cubic lattice.  相似文献   

15.
Semi‐rigid polyesters from diphenyl dicarbonic acid and some branched propyl and butyl spacers have been investigated using Differential Scanning Calorimetry. From Δcp at Tg and the determination of the fragility index m, we studied the “strong‐fragile” behaviour of these materials. All the samples appear thermodynamically “strong” and “kinetically” fragile. A comparison of these results with those obtained from glass‐forming liquids leading to linear polymers ‐ such as PET, PCT, PEN or poly‐methyl (α‐n‐alkyl) acrylates ‐ shows that a modification of the polymer rigidity leads to change the fragility index m and the Δcp at the glass transition.  相似文献   

16.
We have recently uncovered a general indium(I)‐catalyzed method for allylations and propargylation of acetals and ketals with a water‐ and air‐stable allyl boronate. By using a more reactive allyl borane, we have successfully extended this methodology to the more challenging C C coupling with ethers. Herein, we report an improved methodology for the indium(I)‐catalyzed allylation of acetals and ethers, through combination of the allyl boronate with a commercially available “hard” Lewis acid, B‐methoxy‐9‐BBN (BBN=borabicyclo[3.3.1]nonane), as an effective co‐catalyst. Significantly, our work highlights for the first time the correlation between the Lewis acidity of “electrophilic” boron‐based compounds and their “nucleophilic” reactivity in Csp3–Csp3 couplings, catalyzed by a “soft” low‐oxidation main group metal. In addition, we also report several applications of these methodologies to the selective synthesis of various carbohydrate derivatives.  相似文献   

17.
1H NMR and SEC analyses are used to investigate the overall efficiency of Copper Catalyzed Azide Alkyne Cycloaddition (CuAAC) “click” coupling reactions between alkyne‐ and azide‐terminated polymers using polystyrene as a model. Quantitative convolution modeling of the entire molecular weight distribution is applied to characterize the outcomes of the functional polymer synthesis reactions (i.e., by atom transfer radical polymerization), as well as the CuAAC coupling reaction. Incomplete functionality of the azide‐terminated polystyrene (∼92%) proves to be the largest factor compromising the efficacy of the CuAAC coupling reaction and is attributed primarily to the loss of terminal bromide functionality during its synthesis. The efficiency of the SN2 reaction converting bromide to azide was found to be about 99%. After taking into account the influence of non‐functional polymer, we find that, under the reaction conditions used, the efficiency of the CuAAC coupling reaction determined from both techniques is about 94%. These inefficiencies compromise the fidelity and potential utility of CuAAC coupling reactions for the synthesis of hierarchically structured polymers. While CuAAC efficiency is expected to depend on the specific reaction conditions used, the framework described for determining reaction efficiency does provide a means for ultimately optimizing the reaction conditions for CuAAC coupling reactions. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 75–84  相似文献   

18.
The “isotropic smectic” phase of chiral side chain polymers combines layered liquid crystalline ordering with macroscopic transparency and low light scattering without any pretreatment, thus providing considerable advantages for photo-optical applications. Photoinduced birefringence in that mesophase of dye containing copolymers has been investigated. A novel LCPT (Light Controlled Phase Transition) photorecording technique has been developed. The light intensity required for the method is as low as 0.3 mW/cm2, and both writing and reading of the image can be performed by nonpolarized light.  相似文献   

19.
Facile prepolymerization and postpolymerization functionalization approaches to prepare well‐defined fluorescent conjugated glycopolymers through Cu(I)‐catalyzed azide/alkyne “Click” ligation were explored. Two well‐defined carbazole‐based fluorescent conjugated glycopolymers were readily synthesized based on these strategies and characterized by 1H NMR, 13C NMR, IR spectra, and UV‐vis spectra. The “Click” ligation offers a very effective conjugation method to covalently attach carbohydrate residues to fluorescent conjugated polymers. In addition, the studies of carbohydrate–lectin interactions were performed by titration of concanavalin A (Con A) to D ‐glucose‐bearing poly(anthracene‐alt‐carbazole) copolymer P‐2 resulting in significant fluorescence quenching of the polymer due to carbohydrate–lectin interactions. When peanut agglutinin (PNA) was added, no distinct change in the fluorescent properties of P‐2 was observed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2948–2957, 2009  相似文献   

20.
CuI‐catalyzed 1,3‐cycloaddition of azides and alkynes (CuAAC) is one of the most powerful synthetic methodologies known. However, its use to prepare well‐defined multimetallic structures is underdeveloped. Apart from the applications of this reaction to anchor different organometallic reagents to surfaces, polymers, and dendrimers, only isolated examples of CuAAC with metal–η1‐alkyne and metal–azide complexes to prepare multimetal entities have been reported. This concept sketches the potential of these reactions not only to prepare “a la carte” multimetal 1,2,3‐triazole derivatives, but also to discover new and unprecedented reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号