首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Preparation and vibrational spectra of the complexes [MBr6]?, [Br5MN3]? and [Br5MNPPh3]? of niobium and tantalum. Cyrstal structure of PPh4[NbBr6] The compounds PPh4[MBr6] and PPh4[MBr5N3] are obtained by reaction of MBr5 with PPh4Br or PPh4N3, respectively, in CH2Cl2 solution (M ? Nb, Ta). The azido complexes PPh4[MBr5N3] can also be obtained by reactions of the hexabromo complexes with iodine azide. According to its i.r. spectrum the symmetry of the [MBr6]? ion is lower than Oh in the solide state. This is corfirmed for PPh4[NbBr6] by a crystal structure analysis; it crystallizes in the monoclinic space group B2/b with four formula units in the unit cell and with the lattice constants a = 2301, b = 1777, c = 686 pm and γ = 96,6°. The structure was determined with X-ray diffraction data and was refined to a residual index of R = 0.055. The [NbBr6]? ion has the symmetry Ci, the deviations from Oh being small. In the azido complexes [MBr5N3]? the azido groups are covalently linked with the metal. From [NbBr5N3]? and PPh3 the complex [Br5Nb?N?PPh3]?, is obtained; for the analogous formation of the corresponding Ta complex photochemical activation is necessary. In this way the complex [Cl5Nb?N?AsPh3]? can also be obtained. I.r. spectra of all the compounds are reported and assigned.  相似文献   

2.
Molybdenum(VI)fluoride-pentafluorotellurates(VI) and Molybdenum(VI)oxide-fluoridepentafluorotellurates(VI): MoFn(OTeF5)6?n and MoOFn(OTeF5)4?n In MoF6 fluorine can be replaced by F5TeO-groups by means of B(OTeF5)3. Rearrangement reactions and internal fluorination finally leads to MoFn(OTeF5)6?n and MoOFn(OTeF5)4?n.  相似文献   

3.
Preparation and Crystal Structure of (NH4)2[V(NH3)Cl5]. The Crystal Chemistry of the Compounds (NH4)2[V(NH3)Cl5], [Rh(NH3)5Cl]Cl2, and M2VXCl5 with M = K, NH4, Rb, Cs and X ? Cl, O (NH4)2[V(NH3)Cl5] crystallizes like [Rh(NH3)5Cl]Cl2 in the orthorhombic space group Pnma with Z = 4. The compounds are built up by isolated NH4+ or Cl? and complex MX5Y ions. The following distances have been observed: V? N: 213.8, V? Cl: 235.8–239.1, Rh? N: 207.1–208.5, Rh? Cl: 235.5 pm. Both structures differ from the K2PtCl6 type mainly in the ordering of the MX5Y polyhedra. The compounds M2VCl6 and M2VOCl5 with M = K, NH4, Rb, and Cs crystallize with exception of the orthorhombic K2VOCl5 in the K2PtCl6 type. The ordering of the MX5Y polyhedra in the compounds (NH4)2[V(NH3)Cl5], [Rh(NH3)5Cl]Cl2 and K2VOCl5 enables a closer packing.  相似文献   

4.
Salts of the weakly coordinating anions [Ga(OTeF5)4] as well as [Ga(Et)(OTeF5)3] and the neutral Ga2(Et)3(OTeF5)3 were synthesized and characterized by spectroscopic methods and single-crystal X-ray diffraction. Ga2(Et)3(OTeF5)3 was formed by treating GaEt3 with pentafluoroorthotelluric acid (HOTeF5) and reacted with PPh4Cl and CPh3Cl to [PPh4][Ga(Et)(OTeF5)3] and [CPh3][Ga(Et)(OTeF5)3]. In contrast, Ag[Ga(OTeF5)4] was prepared from AgOTeF5 and GaCl3 and was used as a versatile starting material for further reactions. Starting with Ag[Ga(OTeF5)4] the substrates [PPh4][Ga(OTeF5)4] and [CPh3][Ga(OTeF5)4] were formed from PPh4Cl and CPh3Cl.  相似文献   

5.
For decades the chemistry of polyhalides was dominated by polyiodides and more recently also by an increasing number of polybromides. However, apart from a few structures containing trichloride anions and a single report on an octachloride dianion, [Cl8]2?, polychlorine compounds such as polychloride anions are unknown. Herein, we report on the synthesis and investigation of large polychloride monoanions such as [Cl11]? found in [AsPh4][Cl11], [PPh4][Cl11], and [PNP][Cl11]?Cl2, and [Cl13]? obtained in [PNP][Cl13]. The polychloride dianion [Cl12]2? has been obtained in [NMe3Ph]2[Cl12]. The novel compounds have been thoroughly characterized by NMR spectroscopy, single‐crystal Raman spectroscopy, and single‐crystal X‐ray diffraction. The assignment of their spectra is supported by molecular and periodic solid‐state quantum‐chemical calculations.  相似文献   

6.
Chalcogenohalogenogallates(III) and -indates(III): A New Class of Compounds for Elements of the Third Main Group. Preparation and Structure of [Ph4P]2[In2SX6], [Et4N]3[In3E3Cl6] · MeCN and [Et4N]3[Ga3S3Cl6] · THF (X = Cl, Br; E = S, Se) [In2SCl6]2?, [In2SBr6]2?, [In3S3Cl6]3?, [In3Se3Cl6]3?, and [Ga3S3Cl6]3? were synthesised as the first known chalcogenohalogeno anions of main group 3 elements. [Ph4P]2[In2SCl6] ( 1 ) (P1 ; a = 10.876(4) Å, b = 12.711(6) Å, c = 19.634(7) Å, α = 107.21(3)°, β = 96.80(3)°, γ = 109.78(3)°; Z = 2) and [Ph4P]2[In2SBr6] ( 2 ) (C2/c; a = 48.290(9) Å, b = 11.974(4) Å, c = 17.188(5) Å, β = 93.57(3)°, Z = 8) were prepared by reaction of InX3, (CH3)3SiSSi(CH3)3 and Ph4PX (X = Cl, Br) in acetonitrile. The reaction of MCl3 (M = Ga, In) with Et4NSH/Et4NSeH in acetonitrile gave [Et4N]3[In3S3Cl6] · MeCN ( 3 ) (P21/c; a = 17.328(4) Å, b = 12.694(3) Å, c = 21.409(4) Å, β = 112.18(1)°, Z = 4), [Et4N]3[In3Se3Cl6] · MeCN ( 4 ) (P21/c; a = 17.460(4) Å, b = 12.816(2) Å, c = 21.513(4) Å, β = 112.16(2)°, Z = 4), and [Et4N]3[Ga3S3Cl6] · THF ( 5 ) (P21/n; a = 11.967(3) Å, b = 23.404(9) Å, c = 16.260(3) Å, β = 90.75(2)°, Z = 4). The [In2SX6]2? anions (X = Cl, Br) in 1 and 2 consist of two InSX3 tetrahedra sharing a common sulfur atom. The frameworks of 3, 4 and 5 each contain a six-membered ring of alternating metal and chalcogen atoms. Two terminal chlorine atoms complete a distorted tetrahedral coordination sphere around each metal atom.  相似文献   

7.
The synthesis, spectroscopic and structural characterisation of a series of [M(hfip)6] (M = Nb, Ta; hfip = O–C(H)(CF3)2) salts that are the typical starting materials to introduce these weakly coordinating anions by metathesis reactions into a given system is described. The salts Li[Nb(hfip)6] and Li[Ta(hfip)6] formed in 65 to 77 % yield from freshly sublimed MCl5 and Li[hfip]. By contrast, several attempts to synthesize Li[Sb(hfip)6] on the similar route (replace NbCl5 by SbCl5) failed to yield a pure product. Upon metathesis of the Li‐niobate with AgF in CH2Cl2, the pure Ag[Nb(hfip)6] formed. Mixing Li[Nb(hfip)6] with an equimolar amount of Cl–CPh3 in CH2Cl2 gave the yellow [CPh3][Nb(hfip)6]. Several of the compounds were characterized by X‐ray analysis. Thus, the crystal structures of the Li+‐ and Ag+‐solvates 1, 2‐C6H4F2{LiNb(hfip)6}2, [Li(H2O)][Ta(hfip)6], and [Ag(C6H5F)][Nb(hfip)6] as well as that of [CPh3][Nb(hfip)6] were solved and are described in this work.  相似文献   

8.
Complexes of the general formula HM(CO)n(oligophos) (M = V, n = 2; M = Nb, n = 3 and 2; M = Ta, n = 3) have been prepared by ion exchange on silica gel from their ionic precursors [Et4N][M(CO)4,3(oligophos)] (n = 3) or by UV irradiation of HM(CO)n+1(oligophos) (n = 2). The new compounds, including fac-[Et4N]-[Nb(CO)3PPh(CH2CH2PPh2)2] and cis-[Et4N][Ta(CO)4PPh(CH2CH2PPh2)2], are characterized by their IR (ν(CO)), 1H (hydride), 31P and metal (51V and 93Nb) NMR spectra.  相似文献   

9.
Thiohalo Compounds of Niobium and Tantalum: NbSCl3, TaSCl3, [NbSCl5]2?, [TaSCl5]2?, [NbSBr4]?. Crystal Structures of (PPh4)2[NbSCl5] · 2 CH2Cl2 and NEt4[NbCl6] NbSCl3 can be obtained from NbCl5 by reaction with H2S or bistrimethylsilyl sulfide in a suspension of CCl4 or CH2Cl2, respectively; in the latter case the product contains a rest of trimethylsilyl groups. This also applies for TaSCl3, NbSBr3 and TaSBr3, which are formed from the metal pentahalides and S(SiMe3)2. NEt4[NbSCl4] is formed together with NEt4[NbCl6] in the reaction of NbCl5 with NEt4SH in CH2Cl2. PPh4[NbCl6] reacts with S(SiMe3)2 in dichloromethane yielding (PPh4)2[NbSCl5] · 2 CH2Cl2, whereas PPh4[NbSBr4] is obtained from PPh4[NbBr6] and S(SiMe3) under the same conditions. (PPh4)2[TaSCl5] · 2 CH2Cl2 was obtained from TaSCl3 and PPh4Cl in CH2Cl2. According to an X-ray crystal structure determination (PPh4)2[NbSCl5] · 2 CH2Cl2 crystallizes in the β-(AsPh4)2[UCl6] · 2 CH2Cl2 type with positionally disordered, octahedral anions. Crystal data: a = 1 021.7, b = 1120.4, c = 1 243.3 pm, α = 70.77, β = 80.24, γ = 80.54°, space group P1 , Z = 2; 2462 unique observed reflexions, R = 0.036. NEt4[NbCl6] crystallizes isotypic to NEt4[WCl6], a = 723.5, b = 1 018.0, c = 1 174.6 pm, β = 100.07°, space group P21/n, Z = 2; 1 875 reflexions, R = 0.075.  相似文献   

10.
Metal Complexes of Biologically Important Ligands. XCV. η5-Pentamethylcyclopentadienyl Rhodium, Iridium, η6- Benzene Ruthenium, and Phosphine Palladium Complexes of Proline Methylester and Proline Amide Proline methylester (L1) and proline amide (L2) give with the chloro bridged complexes [(η5 -C5Me5)MCl2]2 (M ? Rh, Ir), [(η6 -benzene)RuCl2]2 and [Et3PPdCl2]2 N and N,O coordinated compounds: (η5 -C5Me5)M(Cl2)L1 ( 1, 2 M ? Rh, Ir), [(η5-C5Me5) Rh(Cl)(L2)]+Cl? ( 5 ), [(η6- C6Me6) Ru(Cl)(L2)]+Cl? ( 6 ), [(η6-p-cymene)Ru(Cl)(L2)]+Cl? ( 7 ), [(eta;5-C5Me5)M(Cl)(L2-H+)] ( 9, 10 M ? Rh, Ir), (Et3P)Pd(Cl)2L1 ( 3 ), and [(Et3P)Pd(Cl)(L2)]+Cl? ( 8 ). The NMR spectra indicate that for 5 and 6 only one diastereoisomer is formed. The complexes 1, 2, 3 and 5 were characterized by X-ray diffraction.  相似文献   

11.
Preparation and Vibrational Spectra of Nonahalogenodirhodates(III), [Rh2ClnBr9-n]3?, n = 0–9 The pure nonahalogenodirhodates(III), A3[Rh2ClnBr9-n], A = K, Cs, (TBA); n = 0–4, 9, have been prepared. They are formed from the monomer chlorobromorhodates(III), [RhClnBr6-n]3?, n = 0–6, which are bridged to confacial bioctahedral complexes by ligand abstraction in less polar organic solvents. From the mixtures the complexions are separated by ion exchange chromatography on DEAE-cellulose. The solid, air-stable, air-stable, K-, Cs- and (TBA)-salts of [Rh2ClnBr9-n]3?, n = 0–4, are green, of [Rh2Cl9]3? are brown. The IR and Raman spectra of [Rh2Br9]3? and [Rh2Cl9]3? are assigned according to the point group D3h. The chlorobromodirhodates exist as mixtures of geometrical and structural isomers, which belong to different point groups. The vibrational spectra exhibit bands in characteristic regions; at high wavenumbers stretching vibrations with terminal ligands v(Rh—Clt): 360–320, v(Rh—Brt): 280–250; in a middle region with bridging ligands v(Rh—Clb): 300–270, v(Rh—Brb): 210–170 cm?1; the deformation bands are observed at distinct lower frequencies. The terminal ligands are fixed very strong, and the distance between v(Rh—Xt) and v(Rh—Xb) increases with decreasing size of the cations.  相似文献   

12.
Ca6GaN5 and Ca6FeN5: Compounds Containing [CO3]2?-isosteric Anions [GaN3]6? and [FeN3]6? The isotypic phases Ca6GaN5 and Ca6FeN5 (hexagonal, P63/mem; a = 627.7(3)/ 623,7(1) pm, c = 1219.8(3)/1233.2(6) pm; Z = 2) are prepared by reaction of Ca/Ga mixtures (molar ratio 6:1) and Fe/Ca3N2/Ca mixtures (molar ratios from 3:1:13 to 5:2:15) with nitrogen at temperatures of 850°C and 950°C to 1100°C, respectively. The structures contain trigonal-planar anions [MN3]6? which are isosteric to carbonate ions (Ga? N: 195,1(28) pm; Fe? N: 177,0(15) pm). The structures are closely related to those compounds of the hydrotalcite group.  相似文献   

13.
Synthesis, Crystal Structures, and Vibrational Spectra of [Pt(N3)6]2– and [Pt(N3)Cl5]2–, 195Pt and 15N NMR Spectra of [Pt(N3)nCl6–n]2– and [Pt(15NN2)n(N215N)6–n]2–, n = 0–6 By ligand exchange of [PtCl6]2– with sodium azide mixed complexes of the series [Pt(N3)nCl6–n]2– and with 15N‐labelled sodium azide (Na15NN2) mixtures of the isotopomeres [Pt(15NN2)n(N215N)6–n]2–, n = 0–6 and the pair [Pt(15NN2)Cl5]2–/[Pt(N215N)Cl5]2– are formed. X‐ray structure determinations on single crystals of (Ph4P)2[Pt(N3)6] ( 1 ) (triclinic, space group P1, a = 10.175(1), b = 10.516(1), c = 12.380(2) Å, α = 87.822(9), β = 73.822(9), γ = 67.987(8)°, Z = 1) and (Ph4As)2[Pt(N3)Cl5] · HCON(CH3)2 ( 2 ) (triclinic, space group P1, a = 10.068(2), b = 11.001(2), c = 23.658(5) Å, α = 101.196(14), β = 93.977(15), γ = 101.484(13)°, Z = 2) have been performed. The bond lengths are Pt–N = 2.088 ( 1 ), 2.105 ( 2 ) and Pt–Cl = 2.318 Å ( 2 ). The approximate linear azido ligands with Nα–Nβ–Nγ‐angles = 173.5–174.6° are bonded with Pt–Nα–Nβ‐angles = 116.4–121.0°. In the vibrational spectra the PtCl stretching vibrations of (n‐Bu4N)2[Pt(N3)Cl5] are observed at 318–345, the PtN stretching modes of (n‐Bu4N)2[Pt(N3)6] at 401–428 and of (n‐Bu4N)2[Pt(N3)Cl5] at 408–413 cm–1. The mixtures (n‐Bu4N)2[Pt(15NN2)n(N215N)6–n], n = 0–6 and (n‐Bu4N)2[Pt(15NN2)Cl5]/(n‐Bu4N)2[Pt(N215N)Cl5] exhibit 15N‐isotopic shifts up to 20 cm–1. Based on the molecular parameters of the X‐ray determinations the vibrational spectra are assigned by normal coordinate analysis. The average valence force constants are fd(PtCl) = 1.93, fd(PtNα) = 2.38 and fd(NαNβ, NβNγ) = 12.39 mdyn/Å. In the 195Pt NMR spectrum of [Pt(N3)nCl6–n]2–, n = 0–6 downfield shifts with the increasing number of azido ligands are observed in the range 4766–5067 ppm. The 15N NMR spectrum of (n‐Bu4N)2[Pt(15NN2)n(N215N)6–n], n = 0–6 exhibits by 15N–195Pt coupling a pseudotriplett at –307.5 ppm. Due to the isotopomeres n = 0–5 for terminal 15N six well‐resolved signals with distances of 0.03 ppm are observed in the low field region at –201 to –199 ppm.  相似文献   

14.
Electronic Structure of Structural Open Derivatives of the [Mo6X14]2?-Cluster: [Mo5Cl13]2? and [Mo4I11]2? The electronic structure of structural open derivatives of the [Mo6X14]2?-cluster [Mo5Cl13]2? and [Mo4I11]2? has been studied by the EHMO method. In [Mo5Cl13]2? 9 occupied MO's with dominant Mo4d character are responsible for the formation of the 8 metal-metal bonds. In [Mo4I11]2? the stronger covalent character of the Mo? I bonds affects the localization and the energy of molecular orbitals and also the charge distribution. The metal-metal bonds are formed by 8 MO's containing considerable participation of halogen AO's contrary to the chloride cluster. There is no bonding between the Mo atoms at the wing tips of the Mo4 butterfly and the reason for decreasing the dihedral angle between the Mo3 planes in [Mo4I11]2? compared with the octahedral angle is apparently the stabilization of the whole system (Mo? Mo and Mo? I bonds). The unpaired electron occupies in both clusters a slightly antibonding (with regard to the Mo? Mo bonds) orbital.  相似文献   

15.
Na(V3?xNbx)Nb6O14 — A Novel Oxoniobate with [Nb6O12] and [M2O9] Clusters Goldcolored single crystals and black powders of Na(V3?xNbx)Nb6O14 have been prepared by heating a pellet containing a mixture of NaNbO3, NbO2, NbO, VO2 and NaF or Na2B4O7 (as mineralizers) at 900°C in a sealed gold capsule. The analytically determined Nb : V ratio is 5 : 1 and means that x is about 1.5. The compound crystallizes in P63/m with a = 603.4(1), c = 1807.9(5) pm and Z = 3. The crystal structure can be described in terms of common close packing of sheets of O and Na atoms together with Nb6 octahedra. Characteristic building groups of the new structure type are [Nb6O12] clusters, [M2O9] clusters and NbO5 bipyramids. V atoms are distributed only on the positions of the Nb atoms within the trigonal bipyramids or the [M2O9] clusters. The [Nb6O12] clusters show characteristicaly short distances dNb-Nb = 279.4 and 281.3 pm, respectively. In the [M2O9] units, which are built from two MO6 octahedra that share a common face, V or Nb atoms form M–M dumbbells with dM–M = 255.9 pm. The electronic structure is discussed using Extended Hückel calculations.  相似文献   

16.
Dinuclear Palladium(II), Platinum(II), and Iridium(III) Complexes of Bis[imidazol‐4‐yl]alkanes The reaction of bis(1,1′‐triphenylmethyl‐imidazol‐4‐yl) alkanes ((CH2)n bridged imidazoles L(CH2)nL, n = 3–6) with chloro bridged complexes [R3P(Cl)M(μ‐Cl)M(Cl)PR3] (M = Pd, Pt; R = Et, Pr, Bu) affords the dinuclear compounds [Cl2(R3P)M–L(CH2)nL–M(PR3)Cl2] 1 – 17 . The structures of [Cl2(Et3P)Pd–L(CH2)3L–Pd(PEt3)Cl2] ( 1 ), [Cl2(Bu3P)Pd–L(CH2)4L–Pd(PBu3)Cl2] ( 10 ), [Cl2(Et3P)Pd–L(CH2)5L–Pd(PEt3)Cl2] ( 3 ), [Cl2(Et3P)Pt–L(CH2)3L–Pt(PEt3)Cl2] ( 13 ) with trans Cl–M–Cl groups were determined by X‐ray diffraction. Similarly the complexes [Cl2(Cp*)Ir–L(CH2)nL–Ir(Cp*)Cl2] (n = 4–6) are obtained from [Cp*(Cl)Ir(μ‐Cl)2Ir(Cl)Cp*] and the methylene bridged bis(imidazoles).  相似文献   

17.
Reactions designed to give Se6[Sb(OTeF5)6]2 by the reaction of Se2Br2, 4Se, and 2Ag[Sb(OTeF5)6] lead to products that include [Ag2(Se6)(SO2)2][Sb(OTeF5)6]2(1). The distorted cubic (Ag2Se6 2+) n consists of a Se6 molecule bicapped by two silver cations (local D3d sym.). Reactions of AgMX6 (M = As, Sb) with selenium in liquid SO2 yielded crystals of [Ag2Se6][AsF6]2 (2) and [AgSe6][Ag2(SbF6)3] (3). Both salts contain stacked arrays of [AgSe6]+ half-sandwich cationic units. [Ag2Se6][AsF6]2 in addition contains stronger, linear Se─Ag─Se horizontal linkages between the vertically stacked cationic columns. [AgSe6][Ag2(SbF6)3] features a remarkable three-dimensional [Ag2(SbF6)3]? anion held together by strong Sb─F···Ag contacts between component Ag+ and SbF6 ? ions. Hexagonal channels through this honeycomb-like anion are filled by the stacked [AgSe6 +]x.  相似文献   

18.
Treatment of tetraethylammonium hexacarbonyltantalate, [Et4N][Ta(CO)6], with 1.1 equivalents of molecular iodine (I2) in tetrahydrofuran (THF) at 200 K, followed by the addition of 6.0 equivalents of 2,6‐diisopropylphenyl isocyanide (CNDipp) and slow warming to 293 K over a 24 h period gave the tantalum(I) iodide derivative hexakis(2,6‐diisopropylphenyl isocyanide‐κC)iodidotantalum(I), [TaI(C13H17N)6] or TaI(CNDipp)6, 1 . Recrystallization of this substance from pentane provided deep‐red nearly black parallelepipeds of the product, which was characterized by single‐crystal X‐ray diffraction. Addition of 1 in THF at 200 K to a suspension of an excess (5.8 equivalents) of caesium graphite (CsC8), followed by warming, filtration, and solvent removal, afforded a dark‐green oily solid of unknown composition, from which several red–brown rhombohedral plates of the ditantalum salt heptakis(2,6‐diisopropylphenyl isocyanide‐κC)tantalum hexakis(2,6‐diisopropylphenyl isocyanide‐κC)tantalate, [Ta(C13H17N)7][Ta(C13H17N)6] or [Ta(CNDipp)7][Ta(CNDipp)6], 2 , were harvested. Salt 2 is a unique substance, as it is the only known example of a salt containing a homoleptic cation, [MLx]+, and a homoleptic anion, [MLy]?, with the same transition metal and π‐acceptor ligand L. In solution, 2 undergoes full comproportionation to afford the recently reported 17‐electron paramagnetic zerovalent tantalum complex Ta(CNDipp)6, the only known isolable TaL6 complex of Ta0.  相似文献   

19.
The binary zirconium and hafnium polyazides [PPh4]2[M(N3)6] (M=Zr, Hf) were obtained in near quantitative yields from the corresponding metal fluorides MF4 by fluoride–azide exchange reactions with Me3SiN3 in the presence of two equivalents of [PPh4][N3]. The novel polyazido compounds were characterized by their vibrational spectra and their X‐ray crystal structures. Both anion structures provide experimental evidence for near‐linear M‐N‐N coordination of metal azides. The species [M(N3)4], [M(N3)5]? and [M(N3)6]2? (M=Ti, Zr, Hf) were studied by quantum chemical calculations at the electronic structure density functional theory and MP2 levels.  相似文献   

20.
Thio-chloro Compounds of Pentavalent Niobium and Tungsten: WSCl3, [WSCl4]22?, [WSCl5]2?, [NbSCl4]?. Crystal Structure of PPh4[NbSCl4] Black WSCl3 was obtained by reduction of (WSCl4)2 with C2Cl4. With PPh4Cl in CH2Cl2 it yields (PPh4)2[WSCl4]2 which has a dimeric structure with chloro bridges according to its i. r. spectrum. Iodide reduces PPh3Me[WSCl5] in CH2Cl2 to (PPh3Me)2[WSCl5], from which (PPh3Me)2[WSBr5 · BBr3] is obtained by reaction with BBr3. From PPh4Cl in CH2Cl2 and raw NbSCl3 (obtained by solid state reaction of NbCl5 with B2S3) PPh4[NbSCl4] is formed. The crystal structure of PPh4-[NbSCl4] was determined and refined with X-ray diffraction data (residual index R = 0.066 for 1017 reflexions). It crystallizes in the AsPh4[RuNCl4] structure type (space group P4/n) with the lattice constants a = 1303 and c = 760 pm. The quadratic-pyramidal [NbSCl4]? ion has a Nb?S bond length of 209 pm. The i. r. spectra of all compounds are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号