首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Two bacteria exhibiting resistance to toxic arsenic were isolated. These had been contaminated with arsenic in a Chlorella sp. culture medium containing arsenic. The two bacteria were identified as Klebsiella oxytoca and Xanthomonas sp., and grew well in a peptone medium at neutral pH at 30°C, reaching the stationary phase in ca 100h and 70h, respectively. The growth of the bacteria was not affected by arsenic(V) concentrations in the medium as high as 1000mg dm?3. The bacteria bioaccumulated arsenic, a part of the arsenic being methylated. The bioaccumulation exhibited its peak around the turing point from the log phase to the stationary phase. The relative content of methylated arsenic in the excrement was greater than that in the bacterial cells. Adaptation treatment of inorganic arsenic caused an increase in the bioaccumulation of inorganic arsenic by K. oxytoca. Such a situation was not observed in the case of Xanthomonas sp. The bacteria also bioaccumulated methylated arsenic compounds, and demethylation of these species was observed. When the bacteria were killed by ethanol, arsenic was not taken up by the cells.  相似文献   

2.
Accumulation, biomethylation and excretion of arsenic by the arsenic-tolerant freshwater blue–green alga, Phormidium sp., which had been isolated from an arsenic-polluted environment, were investigated. The cellular growth curves were in fair agreement with a ‘logistic curve’ equation. The growth increased with an increase in the surrounding arsenic concentration up to 100 m?g g?1. The cells survived even at 7000 m?g g?1. The arsenic concentration of the cells increased with an increase of the surrounding arsenic concentration up to 7000 m?g g?1. Phosphorus concentrations in the medium affected the growth and arsenic accumulation. No arsenic was accumulated by cells killed by ethanol. The arsenic was methylated to the extent of 3.2% of the total arsenic accumulated. When the cells were transferred into an arsenic-free medium, 85% of the arsenic accumulated was excreted; 58% of the excreted arsenic was in methylated form implying extensive methylation in the arsenic-free medium.  相似文献   

3.
Five arsenic-resistant freshwater algae which had been isolated from an arsenic-polluted environment were studied for the biotransformation of arsenic compounds accumulated by them from the aqueous phase. The algal cells bioaccumulating arsenic were digested by 2 mol dm?3 NaOH at 95°C, the As? C bonds except for As? CH3 were cleaved by the treatment and the methylated arsenic compounds were reduced to the corresponding arsines by sodium borohydride (hydride generation). The arsines were chromatographically separated on the basis of their boiling-point difference and determined by atomic absorption spectrophotometry. Methylated arsenic compounds were found in all algal cells. The predominant arsenic species in the cells, however, were non-methylated arsenic compounds which were mainly present in the residue of a chloroform–methanol extract. The non-methylated arsenic compounds were found to be not present in the free inorganic arsenic substrate and to be bound strongly with proteins or polysaccharides in the cells. Methylated arsenic compounds were found mainly in the lipid-soluble fractions and the major form was a dimethylarsenic compound. Trimethyl- and monomethyl-arsenic compounds were detected but at very low level. The dimethylarsinic acid was not present in the free form in the lipid-soluble fraction and should be bound with a lipid molecule. It was also found that the accumulation of arsenic by Nostoc occurred only in living cells.  相似文献   

4.
Arsenic-tolerant freshwater alga Chlorella vulgaris which had been collected from an arsenicpolluted environment were tested for uptake and excretion of inorganic arsenic. Approximately half the quantity of arsenic taken up by C. vulgaris was estimated to be adhered to the extraneous coat (10 wt %) of the cell. The remainder was bioaccumulated by the cell. Both adhered and accumulated arsenic concentrations increased with an increase in arsenic(V) concentration of the aqueous phase. Arsenic(V) accumulation was affected by the growth phse: arsenic was most actively accumulated when the cell was exposed to arsenic during the early exponential phase and then accumulation decreased with an increase in culture time exposed to arsenic. The alga grew well in the modified Detmer (MD) medium containing 1 mg As(III) dm?3 and the growth curve was approximated by a ‘logistic equation’. Arsenic(III) was accumulated up to the second day of the culture time and arsenic(III) accumulation decreased with an increase in the culture time after that. Arsenic accumulation was also largely affected by various nutrients, especially by managanese, iron and phosphorus compounds. A modified MD medium with the three nutrients was proposed for the purpose of effective removal of arsenic from the aqueous phase. Using radioactive arsenate (Na2H74AsO4), the arsenic accumulated was found to be readily excreted under conditions which were unfavourable for the multiplication of C. vulgaris.  相似文献   

5.
Bioaccumulation and biomethylation of inorganic arsenic were investigated in a three-step fresh-water food chain consisting of an autotroph (blue- green alga: Nostoc sp.), a herbivore (shrimp: Neocaridina denticulata) and a carnivore (carp: Cyprinus carpio). The autotroph, herbivore and carnivore survived in arsenic-containing water below 1000, 2 and 60 mg As(V) dm?3, respectively. Bioaccumulation of arsenate by Nostoc sp. was decreased with an increase in the nitrogen concentration of the medium. Arsenic(V) was accumulated from the water phase and part-methylated by the carp, as well as by the algae and shrimp. Arsenic was mostly accumulated in the gut of the carp. The predominant arsenical in the guts was the monomethylarsenic species. Arsenic accumulation via food in the above three-step food chain decreased by one order of magnitude and the relative concentration of methylated arsenic to the total arsenic accumulated increased successively with an elevation in the trophic level. When arsenicals were transferred via the food chain, no monomethylarsenic, or only a trace amount, was detected in the three organisms. Dimethylarsenic in the alga, both dimethyl- and trimethyl-arsenic in shrimp, and trimethyl-arsenic in carp, were the predominant methylated arsenic species, respectively.  相似文献   

6.
The effect of seasonal temperature change on the release of methylated arsenic from macroalgae, phytoplankton and sediment porewaters has been investigated by a series of controlled laboratory experiments. The appearance of dissolved arsenic species in the overlying waters was monitored using a coupled hydride generation/GC AA analytical technique. The liberation of dissolved arsenic species by the macroalgae Ascophyllum nodosum was examined under estuarine conditions at 5 °C and 15 °C. At the lower temperature the release rates were 0.2 μg kg?1 h?1 (wet weight of material) for monomethylarsenic (MMA) and 0.5 μg kg?1 h?1 for dimethylarsenic (DMA), whereas at 15 °C the rates were 0.4 μg kg?1 h?1 and 3.2 μg kg?1h?1, respectively. Incubation experiments were also carried out at 15 °C using the diatom Skeletonema costatum. During the log growth phase, when chlorophyll a concentrations were in the range 1-5 μg dm?3, the rate of appearance of DMA in the water was ~3 ng dm?3 h?1. Sediment samples from the freshwater and seawater end-members of the Tamar Estuary, UK, were incubated under natural conditions at 5 °C and 15 °C. The freshwater sediments released DMA in preference to MMA; the concentrations of both species increased exponentially and reached a steady state in the overlying water after 250 h. Considerably more DMA was produced at 15 °C than at 5 °C, whilst the amount of MMA produced appeared to be insensitive to the temperature increase. In contrast, the seawater sediments always produced more MMA than DMA and the increase in temperature had little effect on the production of either MMA or DMA. The results of the laboratory experiments were compared with field observations in temperate estuaries, including the Tamar Estuary. The implications of changes of water temperature on the fate of arsenic in estuaries is discussed and modifications to the estuarine arsenic cycle are proposed.  相似文献   

7.
1H spin–echo NMR spectroscopy of intact cells of C. roseus facilitates monitoring changes inside the cells on treatment with arsenicals. This in situ detection method is non-invasive and non-destructive in comparison to other available biochemical methods. Short term uptake of the arsinicals, methylarsinate MMA and dimethylarsenate DMA, by C. roseus cells that have reached stationary phase in 1-B5 medium, is followed by using NMR spectroscopy, and in particular, the Carr–Purcell–Meiboom–Gill pulse sequence. An increase in the peak height of the methylarsenic resonance over a period of 11 h is indicative of uptake of each arsenical. However, there is no evidence of any biotransformation products in the 1H NMR spectra. The accumulation site of DMA is probably the vacuole as is seen from the change in the chemical shift of DMA as it moves into a compartment of lower pH. Biochemical changes associated with the presence of arsenicals are evident in the 1H NMR spectra of C. roseus cells isolated at different stages in the growth cycle. Although uptake has been demonstrated by other analytical techniques, the resonances corresponding to both MMA and DMA are not observed in the 1H NMR spectra of cells growing in media containing each arsenical. The association of these arsenicals with large biomolecules in the cell may account for these absences. In this event, the spins–spin relaxation time of the arsenic species would shorten and the signals would not be seen in the spin–echo NMR spectrum. In cells growing in the presence of MMA, a new resonance is observed at a chemical shift position 2.2 ppm after 15 days of growth. The shift in position of the resonance, from 1.75 ppm expected at physiological pH, may indicate an altered environment around the arsenic species such as high intracellular acidity.  相似文献   

8.
Experimental results in this paper lead to the following conclusions. (1) Cell homogenates of Chlorella vulgaris adsorbed the inorganic arsenic compound Na2HAsO4 but no methylation of the arsenic occurred in vitro. (2) A small part of the arsenic bioaccumulated by C. vulgaris was methylated in vivo. The quantity of arsenic methylated in the cell increased with an increase of arsenic concentration in the medium. (3) When the arsenic-accumulating cells were transferred into arsenic-free media, the arsenic was excreted and the relative quantity of the methylated arsenic in the excrement was larger than that in the cell. (4) In the growth phase of C. vulgaris, a small fraction of the arsenic accumulated in the cell was first transformed to monomethyl and dimethyl-arsenic compounds during the early exponential phase, and after a short time a fraction was transformed to trimethylarsenic species.  相似文献   

9.
The long-term uptake and distribution of arsenic compounds by hydroponically cultivated White mustard (Sinapis alba) was investigated with a special emphasis on controlling the stability of the arsenic compounds in nutrient solution during the experiment. It was concluded that arsenites are rapidly oxidised to arsenates during the 7-day cultivation of White mustard. The presence of plant roots increases the oxidation rate of arsenites. Dimethylarsinic acid (DMA) and arsenates remain stable during the exposition, while monomethylarsonic acid (MMA) is partially demethylated. When the nutrient solution containing arsenites is exchanged daily, the distribution of arsenic in White mustard is significantly different (translocation factor—TF—is 70 times higher) in comparison to the experiment without exchange of the medium. Speciation analysis of arsenic in plant tissues and in nutrient solutions was performed by high performance liquid chromatography with inductively coupled plasma-mass spectrometry (HPLC ICP-MS). The results obtained unquestionably illustrated that the uncontrolled conditions of hydroponic plant cultivation may be a source of misinterpretation of all the obtained data. Additionally, the synthesis of phytochelatins in plants exposed to different arsenic compounds was investigated. Phytochelatins were identified in tissues of plants exposed to arsenites and arsenates, and their presence was correlated with high arsenite content. Phytochelatin synthesis was not indicated in plants grown in the presence of MMA and DMA.  相似文献   

10.
Ti (IV)-modified vinyl phosphate magnetic nanoparticles (Fe3O4@SiO2@KH570-PO4-Ti (IV)) was prepared for simultaneous extraction of multiple arsenic species, followed by high performance liquid chromatography (HPLC)– inductively coupled plasma mass spectrometry (ICP-MS) analysis. Inorganic arsenic (iAs), dimethyl arsenic acid (DMA), monomethyl arsenic acid (MMA), p-amino phenyl arsenic acid (p-ASA), 4-hdroxyphenylarsenic acid (4-OH), phenyl arsenic acid (PAA), and 3-nitro-4-hydroxyphenylarsenic acid (ROX) were investigated as interest analytes. It was found that they were quantitatively adsorbed on Fe3O4@SiO2@KH570-PO4-Ti (IV) at pH 5, and desorbed completely with 0.1 mol/L sodium hydroxide solution. Enrichment factor of 100-fold was obtained by consuming 100 mL sample solution. Under the optimal conditions, the method combining MSPE with HPLC-ICP-MS presented a linear range of 1–5000 ng/L for seven arsenic species. The limits of detection were 0.39, 0.60, 0.23, 1.85, 0.54, 0.48, and 0.84 ng/L for DMA, MMA, p-ASA, iAs, 4-OH, PAA, ROX, with the relative standard deviations (c = 10 ng/L, n = 7) of 3.6, 3.9, 5.5, 12.4, 6.1, 5.8, 5.0, respectively. The accuracy of the method was validated by analyzing BCR 627 Tuna fish. The application potential of the method was further evaluated by chicken muscle and liver samples. No target arsenic species were detected in these samples, and good recoveries (80.6–123%) were obtained for the spiked samples at low, medium, and high concentration levels.  相似文献   

11.
To investigate the effect of cadmium on the accumulation of arsenic by Dunaliella sp., the arsenic accumulated in the alga was determined as a function of time for coexistence of the algae with arsenic and cadmium, with batch methodology. Growth of Dunaliella sp. was affected by addition of arsenic (Na2HAsO4.7H2O) and cadmium (CdCl.2.5H2O). Growth inhibition of Dunaliella sp. was accelerated by coexistence of arsenic and cadmium. The content of arsenic in Dunaliella sp. became a maximum at 15 h after exposure. The arsenic content in the cells was influenced by addition of cadmium to the solution; the arsenic content in the alga derived from growth in a 10 mg As dm ?3 solution decreased from 2.7 mg g?1 in the absence of cadmium to 0.35 mg g?1 for the addition of 100 mg Cd dm?3. Dunaliella sp. accumulated cadmium in large quantities but, in conditions of coexistence with arsenic and cadmium, the cadmium content in cells decreased with an increase in the concentration of arsenic in the growth medium Cadmium accumulation by Dunaliella sp. was observed in dead cells although arsenic accumulation was not observed. About 85% of arsenic in the cells was in the water-soluble fraction. On the other hand, about 42% of cadmium in the cells was in the water-soluble fraction, and about 55% was in a fraction soluble in cold trichloroacetic acid.  相似文献   

12.
The effect of arsenic compounds on indole alkaloid production by cell suspension cultures of Catharanthus roseus was investigated. The analysis of indole alkaloids was achieved by using thermospray liquid chromatography-mass spectrometry (LC MS) which facilitated the rapid screening of alkaloid composition in cultures treated with different arsenicals at different times in their growth cycle. Treatment with dimethylarsinate (DMA), a non-selective herbicide, has a drastic inhibitory effect on alkaloid production although it is the least toxic arsenical to growth. Tryptamine, an early precursor in the biosynthesis of indole alkaloids, accumulates in cells treated with DMA, indicating that the initial step of condensation of tryptamine with secologanin is inhibited. Treatment with DMA during the early stationary phase of culture growth enhances the accumulation of some alkaloids, although some, such as catharanthine, are suppressed. The arsenicals arsenate and methylarsonate (MMA) have an inhibitory effect on alkaloid production when applied during the early growth stages. In contrast to MMA and DMA, arsenate has a stimulatory effect on catharanthine production when introduced to the culture during its early stationary phase. Thus the changes in the pattern of alkaloid accumulation on addition of arsenicals are dependent on the arsenic species and its concentration, as well as the time of application. This variable response indicates that each arsenical has a distinct mode of action on the secondary metabolic pathways of C. roseus.  相似文献   

13.
Tolerance, bioaccumulation, biotransformation and excretion of arsenic compounds by the fresh–water shrimp (Neocaridina denticulata) and the killifish (Oryzias latipes) (collected from the natural environment) were investigated. Tolerances (LC50) of the shrimp against disodium arsenate [abbreviated as As(V)], methylarsonic acid (MAA), dimethylarsinic acid (DMAA), and arsenobetaine (AB) were 1.5, 10, 40, and 150μg As ml?1, respectively. N. denticulata accumulated arsenic from an aqueous phase containing 1 μg As ml?1 of As(V), 10 μg As ml?1 of MAA, 30 μg As ml?1 of DMAA or 150 μg As ml?1 of AB, and biotransformed and excreted part of these species. Both methylation and demethylation of the arsenicals were observed in vivo. When living N. denticulata accumulating arsenic was transferred into an arsenic–free medium, a part of the accumulated arsenic was excreted. The concentration of methylated arsenicals relative to total arsenic was higher in the excrement than in the organism. Total arsenic accumulation in each species via food in the food chain Green algae (Chlorella vulgaris) → shrimp (N. denticulata) → killifish (O. latipes) decreased by one order of magnitude or more, and the concentration of methylated arsenic relative to total arsenic accumulated increased successively with elevation in the trophic level. Only trace amounts of monomethylarsenic species were detected in the shrimp and fish tested. Dimethylarsenic species in alga and shrimp, and trimethylarsenic species in killifish, were the predominant methylated arsenic species, respectively.  相似文献   

14.
The accumulation of arsenic by Dunaliella sp. was examined by using a solution containing arsenic only as a first approach to the study of arsenic recovery by aqueous systems. The accumulation of arsenic by Dunaliella sp. was rapid, with equilibrium established in 8 h with respect to arsenic partioning between dissolved and particulate phase. The optimum accumulation was at pH 8.2, NaCl 20 g dm?3, illumination 5000–10000 lux and temperature 22°C. Increased phosphate concentration significantly decreased the uptake of arsenic in the culture. These results suggested that accumulation of arsenic by Dunaliella sp. depended upon biological activity.  相似文献   

15.
Arsenic compounds including arsenous acid (As(III)), arsenic acid (As(V)), dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) were separated by high-performance liquid chromatography (HPLC) and detected by inductively coupled plasma mass spectrometry (ICP-MS). A Hamilton PRX-100 anionic-exchange column and a pH 8.5 K2HPO4/KH2PO4 5.0 × 10−3 mol L−1 mobile phase were used to achieve arsenic speciation. The separation of arsenic species provided peaks of As(III) at 2.75 min, DMA at 3.33 min, MMA at 5.17 min and As(V) at 12.5 min. The detection limits, defined as three times the standard deviation of the lowest standard measurements, were found to be 0.2, 0.2, 0.3 and 0.5 ng mL−1 for As(III), DMA, MMA and As(V), respectively. The relative standard deviation values for a solution containing 5.0 μg L−1 of As(III), DMA, MMA and As(V) were 1.2, 2.1, 2.5 and 3.0%, respectively. This analytical procedure was applied to the speciation of arsenic compounds in drinking (soft drink, beer, juice) samples. The validation of the procedure was achieved through the analysis of arsenic compounds in water and sediment certified reference materials.  相似文献   

16.
Laboratory studies have shown that microorganisms present in both natural marine sediments and sediments contaminated with mine-tailings are capable of methylating arsenic under aerobic and anaerobic conditions. Incubation of sediments with culture media produced volatile arsines [including AsH3, (CH3)AsH2, and (CH3)3As] as well as the methylarsenic(V) compounds (CH3)nAs(O) (OH)3?n (n = 1, 2, 3). The concentration of the arsines increased and then decreased in a growth and decay pattern reminiscent of the methylation and demethylation of mercury. Thus, arsenic speciation varied with time, being controlled by the biochemical activity of the dominant microbe(s) at the time of sampling, and changing in response to the ecological succession within the microbial community. The analysis of the interstitial waters of sediments collected from several British Columbia (Canada) coastal sites gave results that were consistent with the culture experiments, in that the methylarsenicals were ubiquitous, but present only in small amounts. It is estimated that methylarsenic(V) species account for less than 1% of the arsenic present in porewaters. The actual proportion was dependent on a number of factors but, contrary to prevailing viewpoints, there was no relationship to the organic content of the sediments, nor did methylation occur only in the presence of high arsenic concentrations. Instead, all of the evidence was consistent with in situ microbial methylation and demethylation processes that are similar to the arsenic transformations that occur in soil ecosystems. The results are discussed in terms of the cycling of arsenic in the marine environment and within the marine food web.  相似文献   

17.
The effect of 23 various elements (nitrogen, manganese, magnesium, molybdenum, zinc, selenium, gallium, nickel, cobalt, lithium, strontium, vanadium, tin, antimony, bismuth, cadmium, chromium, lead, iron, silver, copper, potassium and calcium) in water on growth and arsenic accumulation in Dunaliella saline was investigated. The order of growth inhibition of D. salina by these elements was Ag>Cd>Co>Ni>Cu>Zn>Fe>Sb>Ga>Cr>Bi>Sr>Mn>Sn>Se>Pb>V>Ca, Mg, Mo, K, Li. Arsenic accumulation in D. salina was unaffected by an increase in calcium and chromium. Also, the arsenic content in D. salina decreased at a potassium concentration of 100 mg dm?3, and was also reduced by the addition of cadmium and nitrogen; however, it was increased by the addition of lithium at 100 mg dm?3, tin, gallium, bismuth, strontium, vanadium, iron and manganese at 10 mg md?3, lead, antimony, zinc, copper cobalt and nickel at 1 mg dm?3, selenium at 0.1 mg dm?3, and silver at 0.005 mg dm?3, respectively. These results imply that arsenic accumulation by D. salina depends upon biological activity and physical adsorption.  相似文献   

18.
Humans are exposed via air, water and food to a number of different arsenic compounds, the physical, chemical, and toxicological properties of which may vary considerably. In people eating much fish and shellfish the intake of organic arsenic compounds, mainly arsenobetaine, may exceed 1000 μg As per day, while the average daily intake of inorganic arsenic is in the order of 10–20 μg in most countries. Arsenobetaine, and most other arsenic compounds in food of marine origin, e.g. arsenocholine, trimethylarsine oxide and methylarsenic acids, are rapidly excreted in the urine and there seem to be only minor differences in metabolism between animal species. Trivalent inorganic arsenic (AsIII) is the main form of arsenic interacting with tissue constituents, due to its strong affinity for sulfhydryl groups. However, a substantial part of the absorbed AsIII is methylated in the body to less reactive metabolities, methylarsonic acid (MMA) and dimethylarsinic acid (DMA), which are rapidly excreted in the urine. All the different steps in the arsenic biotransformation in mammals have not yet been elucidated, but it seems likely that the methylation takes place mainly in the liver by transfer of methyl groups from S-adenosylmethionine to arsenic in its trivalent oxidation state. A substantial part of absorbed arsenate (AsV) is reduced to AsIII before being methylated in the liver. There are marked species differences in the methylation of inorganic arsenic. In most animal species DMA is the main metabolite. Compared with human subjects, very little MMA is produced. The marmoset monkey is the only species which has been shown unable to methylate inorganic arsenic. In contrast to other species, the rat shows a marked binding of DMA to the hemoglobin, which results in a low rate of urinary excretion of arsenic.  相似文献   

19.
The unicellular marine alga, Dunaliella salina 19/30 was grown in seawater containing an inorganic arsenic concentration (Na2HAsO4) up to 2000 mg dm?3. The cells survived even at 5000 mg dm?3. The arsenic concentration of the cells increased with an increase of the surrounding arsenic concentration. Arsenic in D. salina was also greatly affected by addition of phosphorus. The arsenic-tolerance behavior of D. salina seemed to suggest that the algae have a function to prevent accumulation of inorganic arsenic by increasing the β-carotene, fatty-acid (C18:1, C18:3) and water-extractable carbohydrate content in the cells. Arsenic accumulation also rose steadily with an increase in the nitrogen concentration in the medium.  相似文献   

20.
Phytoremediation has been investigated as an alternative to excavation to remediate contamination in soil. In this work, Allium fistulosum (green onions) and Pteris cretica cv Mayii (moonlight ferns) were investigated for phytoremediation. Green onions were planted in lead-spiked soil, and chelating agents were introduced to enhance the uptake of lead by the plants. Lead uptake was low in the absence of chelating reagents. Ethylenediaminetetraacetic acid (EDTA) significantly enhanced the concentration of lead in the stems of green onions, while propylenediaminetetraacetic acid (PDTA) did not induce lead absorption.Moonlight ferns (P. cretica cv Mayii) were planted in a hydroponic system to which arsenic (III), arsenic (V), and monomethylarsenate (MMA) were added with hydroponic solution. Ferns exposed to arsenic (III) showed the highest extraction of arsenic followed by ferns exposed to arsenic (V). The extraction of arsenic by the ferns was higher when arsenic (III) was mixed with arsenic (V) than the combination of arsenic (III) and MMA. These results suggest that inorganic arsenic is phytoextracted preferentially to MMA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号