首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Base-free Tris(trimethylsilyl)methyl Derivatives of Lithium, Aluminium, Gallium, and Indium Base-free LiR* (R*=-C(SiMe3)3) has been prepared from R*Cl and Li-metal in toluene at 85?90°C and used to synthesize the metallanes R*MMe2 with M = Al, Ga and In, respectively. The NMR (1H, 13C, 29Si) and the vibrational spectra of these trisyl compounds have been discussed. AlCl3 and LiR*(ratio 1 : 1) forms the metallate metallate Li[R*AlCl3]. The triclinic unit cell (space group P1 ) consists of a centrosymmetric assoziate, formed by four Li[R*AlCl3]- units with Al? Cl…?Li bridges, two pairs of Li-atoms differing in their chlorine-coordination and two disordered toluene molecules, inserted in the crystal lattice (R1wR2 =0,0444/0,1072). The reaction of GaCl3 with LiR* (I :1) gives the unusual sesquichloride (R*Ga(Cl1,33)Me0,67)3 in moderate yield. The X-ray structure determination shows a Ga3Cl3-skeleton with chairconformation and disordered, terminal gallium ligands (R1/wR2= 0,0646/0,2270).  相似文献   

2.
Vinamidine Chelates of Aluminium and Gallium The vinamidine aluminum and gallium complexes C5H7R2AlCl2N2 ( 8 ) and C5H7R2Cl2GaN2 ( 9 ) (R = Me, iPr, tBu) are obtained from the corresponding vinamidines and ECl3 (E = Al, Ga) in moderate yields. Crystal structure analyses of 8 a , 8 b , 9 a and 9 c reveal a minor influence of the alkyl subtituents on the structure of the six membered rings. Ab initio calculations demonstrate polar Al–N and Ga–N bonds without significant π-interaction. The calculated 13C- and 27Al-NMR shifts are reported.  相似文献   

3.
New Aminometalanes of Aluminum and Gallium The reaction of secondary amines R′RNH with trimethyaluminum leads to the formation of dimeric aminoalanes [RR′NAlMe2]2 ( 1 ) (R = 2,6-Me2C6H3, R′ = SiMe2(2,4,6-Me3C6H2)) and 2 (R = Ph, R′ = SiMe3). Using a different stoichiometric ratio, a monomeric aminoalane [RR′N]2AlMe ( 3 ) (R = Ph, R′ = SiPh2Me) is obtained, having an aluminum atom of coordination number three due to the steric demand of the substituents. The synthesis of the corresponding aminogallanes 4 , 5 and 6 is achieved by reaction of lithium amides LiNRR′ (R = Ph, 2,6-iPr2C6H3; R′ = SiMe3, SiMe2iPr) with dimethylgalliumchloride, Me2GaCl, in n-hexane. The formation of the dimeric species is in 1 through carbon while that in 2 and 3 is formed through nitrogen. The X-ray single crystal structure analysis of 1 , 2 , 3 and 4 are reported.  相似文献   

4.
Reactions of some Methylmetal Halides of Aluminium, Gallium, and Indium with Hexamethyldisilazane MeAlCl2 or MeGaBr2, and bis(trimethylsilyl)amine form the dimeric, mixed-substituted ring molecules (Me(Hal)MIII–N(H)SiMe3)2 and one equivalent Me3SiHal. The NMR (1H, 13C, 29Si) and vibrational spectra (IR, Raman) are measured and the X-ray structure analysis of the compound with MIII = Al and Hal = Cl, has been done as well. Me2AlCl with an excess of HN(SiMe3)2 forms the expected amide (Me2Al–N(H)SiMe3)2, the homologue Me2GaCl with HMDS, however, gives at 50–55 °C only the cyclic (1 : 1) adduct (Me2Ga–N(H)SiMe3) · (Me2GaCl). This complex crystallizes in the space group Cmc21, the unit cell consists of four binucleate molecules with folded Ga–N–Ga–Cl-ring skeletons.  相似文献   

5.
Redetermination of Structure and Properties of the Isotypic Sodium Tetraamido Metallates of Aluminium and Gallium Crystals for x-ray structure determination of NaAl(NH2)4 and NaGa(NH2)4 were obtained by the reaction of the metals with ammonia in autoclaves at 100°C and P(NH3) = 60 bar within 7 days. The compounds crystallize isotypic in the space group P21/c with Z = 4 NaAl(NH2)4 a = 7.328(2) Å, b = 6.047(2) Å, c = 13.151(3) Å, β = 94.04(1)° NaGa(NH2)4 a = 7.4087(8) Å, b = 6.0917(5) Å, c = 12.855(2) Å, β = 92.10(1)° The structures were refined inclusively all H-positions of the amide ions. The ternay amides are furthermore characterized by their IR spectra and their thermal behaviour.  相似文献   

6.
Preparation, Properties, and Molecular Structures of Dimethylmetal Alkoxides and Amides of Aluminium and Gallium Dimethylaluminium‐ ( 1 ) and Dimethylgallium‐o‐methoxyphenyl‐1‐ethoxide ( 2 ) were obtained by reaction of Me3Al and Me3Ga respectively with o‐Methoxyphenyl‐1‐ethanol in n‐pentane. Dimethylaluminium‐ ( 3 ) and dimethylgallium‐o‐methoxyphenyl‐2‐ethylamide ( 4 ) were prepared by treatment of Me2AlCl and Me2GaCl respectively with Lithium‐o‐methoxyphenyl‐2‐ethylamide. Trimethylgallium‐o‐methoxyphenylmethylamine‐Adduct ( 5 ) was isolated using reaction of Me3Ga with the corresponding amine. The compounds were characterised by 1H‐, 13C‐, and 27Al n.m.r. spectroscopy. The molecular structures of 2 and 5 were determined by X‐ray diffraction. Compounds 1 – 4 form brigded dimeric molecules. The bond distances of the central Ga2O2 ring in 2 correspond to those of compounds of similar structure.  相似文献   

7.
8.
9.
10.
11.
12.
13.
Analytical and Bioanalytical Chemistry -  相似文献   

14.
Ternary Bromides of Aluminium, Gallium, and Indium of the Formula Type AIMIIIBr4 (AI = Na, Ga, K, In, Rb). An Overview The fourteen possible bromides AIMIIIBr4 with AI = Na, Ga, K, In, Rb and MIII = Al, Ga, In are obtained from mixtures of the binary components, ABr and MBr3. Six different structure types are observed: NaGaBr4-, NaAlCl4-, GaCl2-, β-GaBr2-, KAlBr4-, and BaSO4-type. Singlecrystal data are reported for the examples of NaGaBr4, KGaBr4, and InGaBr4. Without exception, slightly distorted tetrahedra [MBr4]? occur. The structural variety must be sought in the adjustment of the coordinational needs of the counter cations A+ (coordination numbers between six and twelve).  相似文献   

15.
The Reactions of cyclo ‐Tristannazanes, [(CH3)2Sn–N(R)]3, with the Trimethyl Derivatives of Aluminium, Gallium, and Indium The cyclo‐tristannazanes [Me2Sn–N(R)]3 (with R = Me, nPr, iPr, iBu) have been prepared from Me2SnCl2 and LiN(H)R in a 1 : 2 molar ratio. With MMe3 (M = Al, Ga, In) they form the dimeric dimethylmetal trimethylstannyl(alkyl)amides [Me2M–N(R)SnMe3]2 in good yields. The mass, NMR (1H, 13C, 119Sn), and vibrational spectra are discussed and compared with the spectra of the tristannazanes. Thermolysis of the gallium amidocompounds splits SnMe4 to form methylgallium imido derivatives with cage structures. The crystal structures of selected stannylamido complexes have been determined by X‐ray structure analysis.  相似文献   

16.
17.
18.
19.
20.
The Courses of the Ammonolyses of the Ammonium Hexafluorometalates of Aluminum, Gallium, and Indium, (NH4)3MF6 (M = Al, Ga, In) The courses of the ammonolysis reactions of the ammonium hexafluorometalates (NH4)3MF6 (M = Al, Ga, In) were investigated with the aid of in‐situ powder diffractometry and differential thermal analysis. Under these conditions, the reaction of (NH4)3AlF6 with gaseous ammonia yields at about 360 °C AlF3 via the intermediates NH4AlF4, Al(NH3)2F3 and Al(NH3)F3. The ammonolysis of (NH4)3GaF6 produces GaN at about 400 °C. Depending upon the actual reaction conditions, the intermediates NH4GaF4 and Ga(NH3)F3 as well as their ammonia adducts NH4GaF4 · NH3 and Ga(NH3)2F3 and the amide‐ammoniate Ga(NH3)(NH2)F2 are observed. In the case of (NH4)3InF6 the intermediates (NH4)3InF6 · NH3 and In(NH3)F3 may exist; there are also indications for the reduction of In(III) to In(I) and for the existence of In(NH3)2F and InF as products of the ammonolysis of (NH4)3InF6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号