首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present paper mainly studied the phase formation and reaction pathway of the Al–Ti–Si system in detail by thermal analysis combined with XRD and SEM observations. The phase formation sequence in Al–Ti–Si system from starting mixtures to final products with increasing temperature can be described as following: Al(l) + Ti(s) + Si(s) → (Al–Si)(l) + Ti(s) + Si(s) → Ti(Al,Si)3(s) + Si(s)Ti5(Si,Al)3 + Al(l). More importantly, the solubility of Si in Ti(Al,Si)3 decreased gradually while that of Al in Ti5(Si,Al)3 increased with temperature increasing, suggesting the transportation of Si atoms from intermediate aluminides Ti(Al,Si)3 to final stable silicides Ti5(Si,Al)3 and hence further confirming the formation of Ti5(Si,Al)3 at the expense of Ti(Al,Si)3.  相似文献   

2.
Pure Ti and Si powders were milled in a horizontal-rotation ball mill and in a high-energy ball mill to synthesize Ti5Si3 powders. The high-energy ball milling produced nanosized single-phase Ti5Si3 particles. Meanwhile, no reaction occurred during the horizontal milling. The two milled powders were consolidated using the high-frequency induction heated sintering method. A dense nanostructured Ti5Si3 compact was consolidated within 2 min using the mechanically synthesized Ti5Si3 powder. The retainment of nanoscale structure during sintering is believed to be the reason for the good mechanical properties of the Ti5Si3 compact. In comparison, the horizontally milled powder reacted to form Ti5Si3 partially on sintering. It is believed that the enhanced toughness of the horizontally milled samples may be due to the crack-deterring effect of softer Si/Ti grains.  相似文献   

3.
The Zintl phase Ba3Si4 has been synthesized from the elements at 1273 K as a single phase. No homogeneity range has been found. The compound decomposes peritectically at 1307(5) K to BaSi2 and melt. The butterfly‐shaped Si46− Zintl anion in the crystal structure of Ba3Si4 (Pearson symbol tP28, space group P42/mnm, a = 8.5233(3) Å, c = 11.8322(6) Å) shows only slightly different Si‐Si bond lengths of d(Si–Si) = 2.4183(6) Å (1×) and 2.4254(3) Å (4×). The compound is diamagnetic with χ ≈ −50 × 10−6 cm3 mol−1. DC resistivity measurements show a high electrical resistivity (ρ(300 K) ≈ 1.2 × 10−3 Ω m) with positive temperature gradient dρ/dT. The temperature dependence of the isotropic signal shift and the spin‐lattice relaxation times in 29Si NMR spectroscopy confirms the metallic behavior. The experimental results are in accordance with the calculated electronic band structure, which indicates a metal with a low density of states at the Fermi level. The electron localization function (ELF) is used for analysis of chemical bonding. The reaction of solid Ba3Si4 with gaseous HCl leads to the oxidation of the Si46− Zintl anion and yields nanoporous silicon.  相似文献   

4.
The constitution of the ternary system Ni/Si/Ti is investigated over the entire composition range using X‐ray diffraction (XRD), energy dispersive X‐ray spectroscopy (EDS), differential thermal analysis (DTA), and metallography. The solid state phase equilibria are determined for 900 °C. Eight ternary phases are found to be stable. The crystal structures for the phases τ1NiSiTi, τ2Ni4Si7Ti4, τ3Ni40Si31Ti13, τ4Ni17Si7Ti6, and τ5Ni3SiTi2 are corroborated. For the remaining phases the compositions are determined as Ni6Si41Ti536), Ni16Si42Ti427), and Ni12Si45Ti438). The reaction scheme linking the solid state equilibria with the liquidus surface is amended to account for these newly observed phases. The discrepancies between previous experimental conclusions and modeling results are addressed. The liquidus surface is dominated by the primary crystallisation field of τ1NiSiTi, the only congruently melting phase.  相似文献   

5.
The clathrate I superconductor Sr8Si46 is obtained under high-pressure high-temperature conditions, at 5 GPa and temperatures in the range of 1273 to 1373 K. At ambient pressure, the compound decomposes upon heating at T=796(5) K into Si and SrSi2. The crystal structure of the clathrate is isotypic to that of Na8Si46. Chemical bonding analysis reveals conventional covalent bonding within the silicon network as well as additional multi-atomic interactions between Sr and Si within the framework cages. Physical measurements indicate a bulk BCS type II superconducting state below Tc=3.8(3) K.  相似文献   

6.
Solvent‐free single crystals of 1,3,5,7,9,11,13,15‐octaphenylpentacyclo[9.5.1.13,9.15,15.17,13]octasiloxane (abbreviated as octaphenyl‐POSS), C48H40O12Si8, were obtained by dehydration/condensation of the tetrol Si4O4(Ph)4(OH)4. The powder pattern generated from the single‐crystal data matches well with the experimentally measured powder pattern of commercial octaphenyl‐POSS. The geometry of the centrosymmetric molecule in the crystal was compared with that in the gas phase, and had shorter Si—O bond lengths and a broader range of Si—O—Si bond angles. The average Si—O bond length [1.621 (3) Å], and Si—O—Si and O—Si—O bond angles [149 (5) and 109 (1)°, respectively] were within the same range measured previously for octaphenyl‐POSS solvates.  相似文献   

7.
A new phase in the quinary system La/Ti/Zr/S/O was obtained from a mixture of La2O3, La2S3, ZrO2, and TiO2 by a solid-state reaction at 1273 K in a sealed fused-silica tube. The structure of this new phase, La5Ti∼3.25Zr∼0.25S5O9.25, was solved by single-crystal X-ray diffraction, with R(obs)=3.37% for 2764 reflections (I>3σ(I)) and 125 variables. This compound crystallizes with four formula units in the monoclinic space group C2/m with lattice constants , , , and β=106.100(8)°. The structure can be viewed as a 2D building constituted from two-atom-thick slabs of rock salt type (=sulfide part) which are interleaved with double-octahedral chains centered on titanium/zirconium atoms (mixed Ti/Zr sites) and drawing a zigzag arrangement (=oxide part). In addition, EDXS analyses show that a solid solution Ti/Zr exists with a general formulation La5Ti3.5−xZrxS5O9.25 (where 0.1?x?0.5).  相似文献   

8.
Titanium carbides of different stoichiometries were silicided with gaseous SiO at 1350°C. A mechanical mixture of silicon and silicon dioxide was used as a reaction source of SiO. Ti3SiC2, TiSi2, and Ti5Si3 were the main reaction products, the phase composition of which strongly depended on the titanium carbide stoichiometry. The siliciding of carbides with a nearly stoichiometric carbon content resulted in the formation of Ti3SiC2, on the surface of which the other silicide phases, such as Ti5Si3 and TiSi2, began to form. For titanium carbides with a low carbon concentration, Ti5Si3 was the only siliciding product.  相似文献   

9.
The reactions between Ti(OR)4 and allylacetatoacetate (HAAA) in 1:1 or 1:2 stoichiometry at rt gave Ti2(OR)6(AAA)2 R = Et ( 1 ), iPr ( 2 ) and Ti(OR)2(AAA)2 R = Et ( 3 ), iPr ( 4 ) species. A monosubstituted derivative Ti2(OiPr)6(AMP)2 ( 5 ) was isolated with allylmethylphenol (AMPH). 1 and 5 were characterized by single crystal X‐ray diffraction. Their molecular structures consist of dimers with the polymerizable ligands in terminal positions andbridging alkoxide ligands assembling five and six‐coordinated metal atoms, respectively. The Ti‐O bond lengths of 1 are in the range 1.76(1) to 2.11(1) Å with the variation Ti‐OEt < Ti‐μ‐OEt < Ti‐η2‐O (allylacetatoacetate). All compounds were characterized by FT‐IR and 1H NMR. The possibility to accede to more extended arrays either by hydrolysis or by radical initiated homo‐ or co‐polymerization reactions was investigated for the allylacetato derivatives as well as for Ti(OiPr)2(AAEMA)2 AAEMA = [2‐(methacryloyloxy)ethylacetoacetato] for the latter reactions.  相似文献   

10.
Determinations of the [Ti(IV)]/[Ti(III) ratio in solutions of titanium(IV) chloride equilibrated with H2(g), at 25°C in 3 M (Na)Cl ionic medium, have indicated the predominance of the Ti(OH)22+ species in the concentration ranges 0.5 ? [H+] ? 2 M and 1.5 x 10?3 ? [Ti(IV)] ? 0.05 M. From the equilibrium data the reduction potential has been evaluated Ti(OH)22+ + 2 H+ + e ? Ti3+ + 2H2O, EoH = (7.7 ± 0.6) x 10?3 V. The acidification reactions of Ti(OH)22+ were also studied in 12 M(Li)Cl medium at 25°C by measuring the redox potential of the Ti(IV)/Ti(III) couple as a function of [H+]. The potentiometric data in the acidity range 0.3 ? [H+] ? 12 M have been explained by assuming Ti4+ + e ? Ti3+, Eo = 0.202 ± 0.002 V Ti4+ + H2O ? TiOH3+ + H+, log Ka1 = 0.3 ± 0.01 Ti4+ + 2H2O ? Ti(OH)22+ + 2H+, log Ka1Ka2 = 1.38 ± 0.05.  相似文献   

11.
The structures of three newly synthesized phosphonate‐substituted polyoxotitanates are reported. The Ti/O core of [Ti4O(OEt)12(PhenylPO3)] ( 1 ) is the building block for two larger phosphonate‐substituted nanoclusters, [Ti25O26(OEt)36(PhenylPO3)6] ( 2 ) and [Ti26O26(OEt)39(PhenylPO3)6]Br ( 3 ). All compounds exhibit a not previously recognized triply bridging binding mode of the phosphonate anchor with short connecting Ti? O bonds, the average of which is 2.010(7) Å. Comparison with previously reported work suggests that the binding mode of the phosphonate anchor is strongly dependent on the structure of the underlying substrate.  相似文献   

12.
The size and doping effects in methane activation by Ti−Si−O clusters have been explored by using a combination of gas-phase experiments and quantum chemical calculations. All [TimSinO2(m+n)].+ (m+n=2, 3, 8, 10, 12, 14) clusters can extract a hydrogen from methane. The associated energies and structures have been revealed in detail. Moreover, the doping and size effects have been discussed involving generalized Kohn-Sham energy decomposition analysis, natural population analysis, Wiberg bond indexes (WBI), molecular polarity index (MPI) and ionization potential (IP). It suggested that Ti−Si−O clusters with a low Ti : Si ratio is beneficial to adsorbing methane and inclination to the hydrogen atom transfer (HAT) process, while the clusters with a high Ti : Si ratio favors the generation of a terminal oxygen radical and results in high reactivity and turnover frequency. On the other hand, a cluster size of m+n=12 is recommended considering both the ionization potential and the turnover frequency of the reaction. Hopefully, these finding will be instructive for the design of high-performance Ti−Si−O catalyst toward methane conversion.  相似文献   

13.
Cage‐type siloxanes have attracted increasing attention as building blocks for silica‐based nanomaterials as their corners can be modified with various functional groups. Cubic octasiloxanes incorporating both Si?H and Si?OtBu groups [(tBuO)nH8?nSi8O12; n=1, 2 or 7] have been synthesized by the reaction of octa(hydridosilsesquioxane) (H8Si8O12) and tert‐butyl alcohol in the presence of a Et2NOH catalyst. The Si?H and Si?OtBu groups are useful for site‐selective formation of Si?O?Si linkages without cage structure deterioration. The Si?H group can be selectively hydrolyzed to form a Si?OH group in the presence of Et2NOH, enabling the formation of the monosilanol compound (tBuO)7(HO)Si8O12. The Si?OH group can be used for either intermolecular condensation to form a dimeric cage compound or silylation to introduce new reaction sites. Additionally, the alkoxy groups of (tBuO)7HSi8O12 can be treated with organochlorosilanes in the presence of a BiCl3 catalyst to form Si?O?Si linkages, while the Si?H group remains intact. These results indicate that such bifunctional cage siloxanes allow for stepwise Si?O?Si bond formation to design new siloxane‐based nanomaterials.  相似文献   

14.
Zusammenfassung Die Phasen Ti3(Ti, Zn)C, Ti3(Ti, Zn)N, Ti3(Ti, Cd)C, Ti3(Ti, Cd)N, Ti3(Ti, Hg)C, Ti3(Ti, Hg)N besitzen Perowskitstruktur. Cr2GaN ist eine H-Phase (Ti2SC-Typ).
Some complex carbides and nitrides in the systems Ti-{Zn, Cd, Hg}-{C, N} and Cr-Ga-N
The phases Ti3(Ti, Zn)C, Ti3(Ti, Zn)N, Ti3(Ti, Cd)C, Ti3(Ti, Cd)N, Ti3(Ti, Hg)C, Ti3(Ti, Hg)N have the perowskite structure. Cr2GaN is a H-phase (Ti2SC-type).


Mit 1 Abbildung  相似文献   

15.
A detailed mechanism of hydrogen production by reduction of water with decamethyltitanocene triflate [Cp*2TiIII(OTf)] has been derived for the first time, based on a comprehensive in situ spectroscopic study including EPR and ATR‐FTIR spectroscopy supported by DFT calculations. It is demonstrated that two H2O molecules coordinate to [Cp*2TiIII(OTf)] subsequently forming [Cp2*TiIII(H2O)(OTf)] and [Cp*TiIII(H2O)2(OTf)]. Triflate stabilizes the water ligands by hydrogen bonding. Liberation of hydrogen proceeds only from the diaqua complex [Cp*TiIII(H2O)2(OTf)] and involves, most probably, abstraction and recombination of two H atoms from two molecules of [Cp*TiIII(H2O)2(OTf)] in close vicinity, which is driven by the formation of a strong covalent Ti? OH bond in the resulting final product [Cp*2TiIV(OTf)(OH)].  相似文献   

16.
Ce2Ti2SiO9 – the First Titanate‐Silicate with Cerium – Preparation, Characterization, and Structure Ce2Ti2SiO9 was synthesized by chemical vapour transport in a temperature gradient (1050 °C → 900 °C) using Ce2Ti2O7 as precursor and ammoniumchloride as transport agent. SiO2 was provided from the wall of the used silica tubes. The chemical composition of the crystals was determined by EDX and EELS analysis. The structure of Ce2Ti2SiO9 was determined and refined to R1 = 0.025, wR2 = 0.067, respectively. The monoclinic phase crystallizes in the space group C2/m (No. 12) with a = 16.907(3) Å, b = 5.7078(8) Å, c = 7.574(2) Å, β = 111.38(2)° and Z = 4. Ti is octahedral, Si is tetrahedral surrounded by oxygen. Ce(1) is coordinated by eight, Ce(2) by ten oxygen atoms. There are edge connected chains of Ti(1)–O‐octahedra parallel [010] which are connected along [001] with each other by Ti(2)–O‐octahedra‐pairs and Si–O‐tetrahedra.  相似文献   

17.
Phosphoraneiminato Complexes of Titanium. Synthesis and Crystal Structures of CpTiCl2(NPMe3), [TiCl3(NPMe3)]2, [Ti2Cl5(NPMe2Ph)3], and [Ti3Cl6(NPMe3)5][BPh4] The title compounds are formed from Cp2TiCl2 and titanium tetrachloride, respectively, and the corresponding phosphane imino compounds Me3SiNPMe3 and Me3SiNPMe2Ph. The tetraphenyl borate salt yielded from the reaction of [Ti3Cl6(NPMe3)5]Cl with NaBPh4. All compounds form yellow crystals which are sensitive to moisture. They were characterized by IR-spectroscopy and crystal structure analyses. CpTiCl2(NPMe3) ( 1 ): Space group Pbca, Z = 8, solution of the structure with 1632 observed independent reflections, R = 0.037. Lattice dimensions at 19°C: a = 1202.6, b = 1224.2, c = 1766.7 pm. The molecules of the compound are monomeric with the (NPMe3)? ligand in almost linear array (bond angle Ti? N? P 170.7°). [TiCl3(NPMe3)]2 ( 2 ): Space group Pbca, Z = 8, structure solution with 698 observed independent reflections, R = 0.030. Lattice dimensions at ?60°C: a = 1140.5, b = 1112.2, c = 1589.4 pm. In 2 the titanium atoms, which occur in trigonal bipyramidal coordination, are linked by the N atoms of the (NPMe3)? groups to form a centrosymmetric dimer with Ti? N bond lengths of 184.3 and 208.2 pm. [Ti2Cl5(NPMe2Ph)3] · CH2Cl2 ( 3 ): Space group Pca21, Z = 4, structure solution with 8477 observed independent reflections, R = 0.051. The lattice dimensions at 20°C are: a = 1221.0; b = 1407.5, c = 2139.3 pm. 3 can be understood as a reaction product of TiCl2(NPMe2Ph)2 and TiCl3(NPMe2Ph). In the resulting, heavily distorted Ti2N2-four-membered ring the Ti? N bond lenghts are 1804., 194.4, 199.2, and 234.6 pm. The longest Ti? N bond is in trans-position to the N atom of the terminal (NPMe2Ph)- ligand, in which the Ti? N distance is 175.6 pm. .[Ti3CL6(NPMe3)5][BPh4] (4): Space group P21/n, structure solution with 2846 observed independent reflections, R = 0.062. The lattice dimensions at 20°C are: a = 1495.2, b = 2335.4, c = 155,8 pm, β = 93.28°. In the cation of 4 the three titanium atoms along with three (NPMe3)- groups with μ2- N functions and two (NPMe3)- groups with μ3- N functions form a nation number 6 with two terminal chlorine atoms.  相似文献   

18.
Oxotitanium Complexes Formation from Alkoxo Derivates Five oxotitanium(IV) complexes with the NCS ligand = {Ti3O4(NCS)4(AA)3}, {Ti2O(NCS)2(BB)4} et M2[TiO(NCS)4}] (AA = phen, bpy; BB = acac, dbm) have been prepared and characterized in the solid state on the basis of their analytical and infrared spectral data. In all the compounds, the Ti? O stretching frequency lies at 770–630 cm?1, which is suggestive of oxygen bridges.  相似文献   

19.
Synthesis and Crystal Structure of Ti12Sn3O10 – a Low Valent Oxide of Titanium with an Oxidic Network and Intermetallic ”︁Islands”︁”︁ The new ternary compound Ti12Sn3O10 is obtained by the reaction of Ti, TiO2 and Sn at 1500 °C. According to the single crystal structure analysis (cubic, space group Fm3m, a = 13.5652(9) Å, Z = 8, wR2(I) = 0.048, R1(F) = 0.020) the air stable compound represents a new structure type combining structural features of oxides and intermetallics. While tin is surrounded only by titanium the five different Ti atoms have oxidic and metallic coordination spheres as well, explaining the quite low averaged oxidation number. The crystal structure is characterized by a threedimensional net of Ti4O‐tetrahedra and trigonal bipyramides Ti5O. In the voids there are intermetallic ”︁islands”︁”︁ of a composition Ti33Sn6 with a diameter of about 10 Å.  相似文献   

20.
Contributions to the Investigation of Inorganic Non-stoichiometric Compounds. XXI. On the Understanding of the Chemical Transport of Ti4O7, Ti5O9, and Ti6O11 in the Presence of the Transporting Agents HgCl2 and TeCl4 Transport experiments starting with a phase TinO2n?1 (e.g. Ti4O7) and with HgCl2 as transporting agent show, that in a temperature gradient at the lower temperature T1 the neighbour phase with a higher oxygen content Tin+1O2n+1 (e.g. Ti5O9) is deposited. As we know from previous investigations, results of experiments with TeCl4 as transporting agent are comparable. Now on the basis of thermodynamical calculations it could be proved that in dry systems Ti/O/HgCl2 and Ti/O/TeCl4 (O/Ti < 2,0) a measurable transport of a TiOx phase resulting in the deposition of a higher phase cannot take place. Observed and calculated results agree, if small amounts of H2O are present resulting in the formation of HCl from HgCl2 or TeCl4 added as transporting agent. The refinement of the model now makes it possible to calculate the composition of the compound deposited at the temperature T1 also in systems with numerous closely neighbouring phases and for given experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号