首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The kinetics of propylene polymerization initiated by racemic ethylene-1,2-bis(1-indenyl) zirconium bis(dimethylamide) [rac-(EBI) Zr(NMe2)2(rac-1)] cocatalyzed by methylaluminoxane (MAO) were studied. The polymerization behaviors of rac-1/MAO catalyst investigated by changing various experimental parameters are quite different from those of rac-(EBI) ZrCl2 (rac-2)/MAO catalyst, due to the differences in the generation procedure of cationic actives species of each metallocene by the reaction with MAO. The activity of rac-1/MAO catalyst showed maximum when [Al]/[Zr] is around 2000, when [Zr] is 137.1 μM, and when polymerization temperature is 30°C. The negligible activity of rac-1/MAO catalyst at a very low MAO concentration seems to be caused by the instability of the cationic active species. The meso pentad values of polymers produced by rac-1/MAO catalyst at 30°C are in the range of 82.8% to 89.7%. The rac-1/MAO catalyst lost stereorigid character at the polymerization temperature above 60°C. The molecular weight of polymer decreased as [Al]/[Zr] ratio, polymerization temperature, and [Zr] increased. The molecular weight distributions of all polymers are in the range of 1.8–2.3, demonstrating uniform active species present in the polymerization system.  相似文献   

2.
By treating cyclodextrin(CD) with methylaluminoxane (MAO such as PMAO or MMAO) or trimethylaluminium (TMA) followed by Cp2ZrCl2, CD/PMAO/Cp2ZrCl2, CD/MMAO/Cp2ZrCl2 and CD/TMA/Cp2ZrCl2 catalysts were prepared. The catalysts were analyzed by 13C-CP/MAS NMR spectrometer and ICP to examine the structure of catalyst and content of Zr and Al. Ethylene polymerization was conducted with MAO or TMA as cocatalyst. Styrene polymerization was also carried out with α-CD/MMAO/Cp*TiCl3 and α-CD/TMA/Cp*TiCl3 catalysts. While the ordinary trialkylaluminium such as TMA as well as MAO can be used as cocatalyst for ethylene polymerization, only MAO could initiate the styrene polymerization with α-CD supported catalysts.  相似文献   

3.
Bis(neomenthyl cyclopentadienyl)zirconium dichloride/methyl aluminoxane (η5-(NMCp)2ZrCl2/MAO) catalyst has been investigated for ethylene polymerization. About 51% of the Zr forms active sites more or less instantaneously according to quenching with tritiated methanol. There is an initial drop of rate of polymerization, Rp, of about 30% which remains constant thereafter. The catalytic activity increases monotonically with temperature; it is proportional to [MAO]1.75 at a constant [Zr] = 1.5 μM and proportional to [Zr]?1.2 at a constant [MAO] = 64.5 mM. At very large [MAO]/[Zr], the catalyst has extremely high activity; κp = 5 × 103 (Ms)?1 at 50°C. There is also facile chain transfer to aluminum, κ = 0.14 s?1 at 50°C. Both κp and κ are about 30 times greater than the corresponding rate constants for MgCl2 supported TiCl3 catalysts. The TiCl3/MgCl2 and (NMCp)2/MAO catalysts have nearly the same activation energy for propagation (ca. 7 kcal/mol?1). The higher activity of the latter is due to its larger preexponential factor in κp. The dependence of catalytic activity on the [MAO]/[Zr] ratio may be explained by rapid association-dissociation equilibria of MAO involving acid-base and/or electron deficient bridge complexation.  相似文献   

4.
The polymerization of ethylene was carried out with a novel in situ supported metallocene catalyst that eliminated the need for a supporting step before polymerization. In the absence of trimethyl aluminum (TMA), in situ supported Et[Ind]2ZrCl2 was not active, but the addition of TMA during polymerization activated the catalyst. Et[Ind]2Zr(CH3)2 was active even in the absence of TMA, whereas the addition of TMA during polymerization enhanced the catalytic activity. The polymerization‐rate profiles of the in situ supported metallocene catalysts did not show rate decay as a function of time. A polymerization mechanism for the in situ supported metallocene catalysts is proposed for this behavior. During polymerization, the in situ supported metallocene catalysts may deactivate, but homogeneous metallocene species present in the reactor may form new active sites and compensate for deactivated sites. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 462–468, 2000  相似文献   

5.
Several non-metallocene (Ti, Zr) and substituted mono-Cp titanium metallocenes have been tested in the presence of methylalumoxane (MAO) as catalyst for syndiospecific polymerization of styrene. Effect of substitutions on the titanium and Cp ligand, molar ratio of Al/Ti, TMA and temperature on activity, Mwt. and % sPS were studied. CpTi(OiPr)3 gives a less active catalyst than Cp*Ti(OiPr)3 and the resulting sPS is less stereoregular and of lower molecular weight.  相似文献   

6.
7.
The attempt to copolymerize ethylene and styrene using η3‐methallyl‐nickel‐diimine {[η3‐2‐MeC3H4]Ni[1,4‐bis(2,6‐diisopropylphenyl)C2H2N2][PF6]} ( 1 ) associated with MAO or TMA produces polystyrene, polyethylene and polyethylene with styrene end groups. Characteristics of the formed polymer depend on the reaction conditions. The presence of styrene in the medium reduces the polymerization productivity and the molecular weight of polyethylene. Incorporation of styrene into polyethylene is favored by a 1 /ethylene/MAO pre‐contact time and depends on the amount of styrene. Maximum incorporation was 4.4 wt.‐%. If styrene is introduced after the pre‐contact time, a bimodal product distribution is observed, suggesting the occurrence of two different catalytic species. If the co‐catalyst is changed from MAO to TMA, no copolymer is formed but the presence of styrene leads to higher amounts of branched polyethylene.  相似文献   

8.
Superior to the homogeneous catalyst or physisorbed catalyst system is a system with the ansa-metallocene catalyst [{C2H4(1-ind)2}Zr(CH3)] on a support formed by covalently anchoring methylalumoxane (MAO) on the internal pore walls of MCM-41. This system is a highly active and shape-selective mesoporous host in the co-oligomerization [shown schematically in Equation (a)] of ethene and propene with ansa-metallocenes. TMA=trimethylaluminum, ind=indenyl.  相似文献   

9.
Propylene was polymerized at varying trimethylaluminium (TMA) concentration with a homogeneous binary metallocene catalyst system activated by methylaluminoxane (MAO) in an attempt to better understand interactions between active catalyst sites and to clarify the role of the TMA as a chain shuttling agent. TMA‐free polymerization conditions were obtained by chemical treatment of MAO solution with 2,6‐di‐tert‐butyl‐4‐methylphenol (BHT). A binary catalyst system consisting of catalyst precursors diphenylmethyl(cyclopentadienyl)(9‐fluorenyl)zirconium dichloride ( 1 ) producing high Mw syndiotactic polypropylene and rac‐dimethylsilylbis(4‐tert‐butyl‐2‐methyl‐cyclopentadienyl)zirconium dichloride ( 2 ) producing low Mw isotactic polypropylene was investigated. At the studied polymerization conditions, chain shuttling between the active catalysts caused by TMA was confirmed. The chain shuttling reactions caused changes in catalyst activity, molecular weights, melting behavior, and polymer microstructure. We propose that TMA is capable to transfer a growing polymer chain from catalyst 2 to catalyst 1 , and a stereoblock copolymer is formed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1364–1376, 2007  相似文献   

10.
Metallocene catalysts entrapped inside the supercages of NaY zeolite were prepared by reacting NaY with methylaluminoxane (MAO) or trimethylaluminium (TMA) and then with Cp2ZrCl2 (Cp: cyclopentadienyl) or Cp2TiCl2. NaY/MAO/Cp2ZrCl2 and NaY/MAO/Cp2TiCl2 catalysts could polymerize ethylene. The amount of additional MAO for the polymerization was lowered to a mole ratio of Al/Zr of 186. Molecular weights and melting points of polyethylene polymerized with NaY-supported catalysts were higher than those of polyethylene obtained with homogeneous metallocene catalysts. It could be confirmed by extraction experiments that the metallocene catalyst was confined securely inside the supercage of the NaY zeolite.  相似文献   

11.
In this paper, we investigate different routes to lower drastically the amount of methylaluminoxane (MAO) required to activate racEt(Ind)2ZrX2 catalysts towards olefin polymerization. A first approach consists in replacing Cl ligands by more easily extractable X groups such as Me, CH2Ph or NMe2 groups. A second method focuses on the preparation of TMA-depleted MAO either by pumping off TMA from commercial MAO or by exploring new synthetic source to MAO via non-hydrolytic processes such as the reaction of TMA with benzophenone. Both methods allowed us to produce polyolefins with a maximal catalytic activity for Al/Zr ratios not exceeding 150, i.e. ratio 20 times lower than those required in the presence of commercial MAO.  相似文献   

12.
The kinetics of propylene polymerization initiated by ansa‐metallocene diamide compound rac‐Me2Si(CMB)2Zr(NMe2)2 (rac‐1, CMB = 1‐C5H2‐2‐Me‐4‐tBu)/methylaluminoxane (MAO) catalyst were investigated. The formation of cationic active species has been studied by the sequential NMR‐scale reactions of rac‐1 with MAO. The rac‐1 is first transformed to rac‐Me2Si(CMB)2ZrMe2 (rac‐2) through the alkylation mainly by free AlMe3 contained in MAO. The methylzirconium cations are then formed by the reaction of rac‐2 and MAO. Small amount of MAO ([Al]/[Zr] = 40) is enough to completely activate rac‐1 to afford methylzirconium cations that can polymerize propylene. In the lab‐scale polymerizations carried out at 30°C in toluene, the rate of polymerization (Rp) shows maximum at [Al]/[Zr] = 6,250. The Rp increases as the polymerization temperature (Tp) increases in the range of Tp between 10 and 70°C and as the catalyst concentration increases in the range between 21.9 and 109.6 μM. The activation energies evaluated by simple kinetic scheme are 4.7 kcal/mol during the acceleration period of polymerization and 12.2 kcal/mol for an overall reaction. The introduction of additional free AlMe3 before activating rac‐1 with MAO during polymerization deeply influences the polymerization behavior. The iPPs obtained at various conditions are characterized by high melting point (approximately 155°C), high stereoregularity (almost 100% [mmmm] pentad), low molecular weight (MW), and narrow molecular weight distribution (below 2.0). The fractionation results by various solvents show that iPPs produced at Tp below 30°C are compositionally homogeneous, but those obtained at Tp above 40°C are separated into many fractions. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 737–750, 1999  相似文献   

13.
The effects of polymerization conditions were evaluated on the production of polyethylene by silica-supported (n-BuCp)2ZrCl2 grafted under optimized conditions and cocatalyzed by methylaluminoxane (MAO). The Al : Zr molar ratio, reaction temperature, monomer pressure, and the age and concentration of the catalyst were systematically varied. Most reactions were performed in toluene. Hexane, with the addition of triisobutilaluminum (TIBA) to MAO, was also tested as a polymerization solvent for both homogeneous and heterogeneous catalyst systems. Polymerization reactions in hexane showed their highest activities with MAO : TIBA ratios of 3 : 1 and 1 : 1 for the homogeneous and supported systems, respectively. Catalyst activity increased continuously as Al : Zr molar ratios increased from 0 to 2000, and remained constant up to 5000. The highest activity was observed at 333 K. High monomer pressures (≈ 4 atm) appeared to stabilize active species during polymerization, producing polyethylenes with high molecular weight (≈ 3 × 105 g mol−1). Catalyst concentration had no significant effect on polymerization activity or polymer properties. Catalyst aging under inert atmosphere was evaluated over 6 months; a pronounced reduction in catalyst activity [from 20 to 13 × 105 g PE (mol Zr h)−1] was observed only after the first two days following preparation. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1987–1996, 1999  相似文献   

14.
The ethylene polymerization by Cp2ZrCl2/MAO (Cp = η5: cyclopentadienyl; MAO = methyl aluminoxane) and CpZrCl3/MAO have been studied. The MW and PD (= M w/M w) of polymers obtained after 2.5-60 min are the same, which indicate short chain lifetime. The values of rate constants for Cp2ZrCl2 at 70°C are: kp = 168?1670 (M s)?1 and ktrA1 = 0.012-0.81 s?1 depending upon [Zr] and [MAO,] ktrβ = 0.28 s?1, and ktrH = 0.2 M?1 torr?1/2 s?1. These chain transfer rate constant values are two to three orders of magnitude greater than the corresponding values found for MgCl2 supported titanium catalysts. One significant difference between the heterogeneous and homogeneous catalysts is that the former decays according to an apparent second order kinetics, whereas the latter decay is simple first order at 0°C and biphasic first order at higher temperatures. The productivity of the catalysts depends weekly on temperature while the MW decreases strongly with increase of temperature above 30°C. All the active species were formed upon mixing Cp2ZrCl2 with MAO while it took up to 20 min for the CpZnCl3/MAO system. The productivity of the former increase more strongly with the decrease of [Zr] than the latter. Otherwise, the two catalyst systems have all their kinetic parameters differing less than a factor of two.  相似文献   

15.
The polymerization behavior of 2-(2′-pyridyl) quinoxaline nickel dibromide/Cp2ZrCl2/MAO system was investigated in three ways: the Ni catalyst was added first, followed by addition of Zr catalyst (method I); the Ni and Zr catalysts were added simultaneously (method II); and the Zr catalyst was added first, followed by addition of Ni catalyst (method III). Results of GC-MS, GPC,13C NMR and DSC investigations indicated that the properties of resulting polyethylene were greatly varied by changing feeding orders of the two catalysts. Decreasing Ni/Zr molar ratio or increasing polymerization temperature gave corresponding polyethylenes with less branches and higher melting point. Compared to the procedure using Cp2ZrCl2 catalyst only, the activity of Zr catalyst in those combined system decreased because of the competition of ethylene between the [Ni−C] and [Zr−C] active centers. In addition, other zirconocenes were also employed as copolymerization catalysts in the combined system with nickel complex. compared to Cp2ZrCl2 case, the ethyl-bridged Zr catalyst performed better for polymerization of ethylene while the Si-bridged Zr catalyst showed better copolymerization ability.  相似文献   

16.
Bimodal polyethylenes were obtained with the dual site Cp*2ZrCl2( 1 )/Et(IndH4)2ZrCl2( 2 ) metallocene catalyst system with a mixture of methylaluminoxane (MAO) and trimethylaluminium (TMA) as the cocatalyst. Polymer properties can be controlled by the amount of TMA added, monomer pressure, polymerization temperature and the addition of hexene or hydrogen. TMA is suggested to be partly coordinated to the active sites, thereby enhancing termination ( 1 ), increasing comonomer incorporation ( 2 ), but also partially blocking coordination and chain transfer to hydrogen. For the ansa catalyst, hydrogen probably relieves dormant (β‐agostic) sites.  相似文献   

17.
A process of ion‐pair formation in the system Cp2ZrMe2/methylaluminoxane (MAO) has been studied by means of density functional theory quantum‐chemical calculations for MAOs with different structures and reactive sites. An interaction of Cp2ZrMe2 with a MAO of the composition (AlMeO)6 results in the formation of a stable molecular complex of the type Al5Me6O5Al(Me)O–Zr(Me)Cp2 with an equilibrium distance r(Zr–O) of 2.15 Å. The interaction of Cp2ZrMe2 with “true” MAO of the composition (Al8Me12O6) proceeds with a tri‐coordinated aluminum atom in the active site (OAlMe2) and yields the strongly polarized molecular complex or the μ‐Me‐bridged contact ion pair ( d ) [Cp2(Me)Zr(μMe)Al≡MAO] with the distances r(Zr–μMe) = 2.38 Å and r(Al–μMe) = 2.28 Å. The following interaction of the μ‐Me contact ion pair ( d ) with AlMe3 results in a formation of the trimethylaluminum (TMA)‐separated ion pair ( e ) [Cp2Zr(μMe)2AlMe2]+–[MeMAO] with r[Zr–(MeMAO)] equal to 4.58 Å. The calculated composition and structure of ion pairs ( d ) and ( e ) are consistent with the 13C NMR data for the species detected in the Cp2ZrMe2/MAO system. An interaction of the TMA‐separated ion pair ( e ) with ethylene results in the substitution of AlMe3 by C2H4 in a cationic part of the ion pair ( e ), and the following ethylene insertion into the Zr–Me bond. This reaction leads to formation of ion pair ( f ) of the composition [Cp2ZrCH2CH2CH3]+–[Me‐MAO] named as the propyl‐separated ion pair. Ion pair ( f ) exhibits distance r[Zr–(MeMAO)] = 3.88 Å and strong Cγ‐agostic interaction of the propyl group with the Zr atom. We suppose this propyl‐separated ion pair ( f ) to be an active center for olefin polymerization.  相似文献   

18.
The structure of methylaluminoxane (MAO), used as a cocatalyst for olefin polymerization, has been investigated by Raman and in situ IR spectroscopy, polymerization experiments, and density functional calculations. From experimental results, a number of quantum chemical calculations, and bonding properties of related compounds, we have suggested a few Me18Al12O9 cage structures, including a highly regular one with C3h symmetry, which may serve as models for methylaluminoxane solutions. The cages themselves are rigid but may contain up to three bridging methyl groups on the cage surfaces that are labile and reactive. Bridging methyls were substituted with Cl atoms to form a compound otherwise similar to MAO. Chlorinated MAO is unable to activate a metallocene catalyst, even in the presence of trimethylaluminum (TMA), but allows subsequent activation by regular MAO. With bis(pentamethylcyclopentadienyl)zirconium dichloride, MAO and TMA seem to influence chain termination independently. Several findings previously poorly explained are rationalized with the new model, including the observed lack of reaction products with excess TMA. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3106–3127, 2000  相似文献   

19.
With C1-, C2- or Cs-symmetric metallocenes, different intermediates and types of copolymers can be obtained from randomly distributed to alternating structures. Substitution of the Cp-ring in [Me2C-(tert-Bu Cp)(Flu)]ZrCl2 yields ethene/norbornene copolymers with an alternating structure, because the rigid norbornene can only be inserted from the open side of the metallocene. By variation of the polymerization parameters, copolymers with glass transition temperatures above 180°C and molecular weights > 100 000 are synthesized. By supporting different metallocenes on a silica/methylaluminoxane (MAO) carrier the deactivation reaction under electron and hydrogen transfer can be suppressed. This is proved for different Al/Zr ratios when trimethylaluminum (TMA) is used as cocatalyst by the lack of methane evolution by metallocenes and by near independence of the polymerization activity on the prereaction time, after reaching maximum activity. Aluminumalkyls and MAO leach Cp2ZrCl2 from the carrier, the leached metallocene is only active in polymerization by adding MAO.  相似文献   

20.
The use of ultraviolet/visible spectroscopy (UV-Vis) for the prediction of metallocene catalyst potential for the polymerisation of olefins is described. Upon addition of methylaluminoxane (MAO) to rac-[C2H4(1-indenyl)2ZrCl2] ([Al]/[Zr] = 200) the ligand-to-metal charge transfer band shows a hypsochromic shift while a bathochromic shift is observed when more MAO is added ([Al]/[Zr] = 2000). These shifts can be explained by assuming that methylation of the zirconocene by MAO occurs in the case of [Al]/[Zr] = 200 while a cationic complex, the active catalytic system, is formed upon addition of more MAO, e.g., [Al]/[Zr] = 2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号