首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a comparison between the electron stimulated desorption (ESD) of anions from DNA samples prepared by lyophilization (an example of poorly organized or nonuniform films) and molecular self-assembly (well-ordered films). The lyophilization (or freeze- drying) method is perhaps the most frequently employed technique for forming DNA films for studies of low-energy electron (LEE) interactions leading to DNA damage; however, this technique usually produces nonuniform films with considerable clustering which may affect DNA configuration and enhance sample charging when the film is irradiated. Our results confirm the general validity of ESD measurements obtained with lyophilized samples, but also reveal limitations of lyophilization for LEE studies on DNA films. Specifically we observe some modulation of structures, associated with dissociative electron attachment, in the anion yield functions from different types of DNA film, confirming that conformational factors play a role in the LEE induced damage to DNA.  相似文献   

2.
Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and microscopy has been used to study the orientational morphology of thin films of the linear alkanes n-C36H74 and n-C60H122, prepared by vacuum deposition onto NaCl (001) surfaces at ambient and elevated substrate temperatures. The orientational morphology, specifically, the nature of domains with lateral and normal orientation, is explored as a function of the chain length and the substrate temperature. It is found that the longer n-C60H122 molecules are laterally oriented on the substrate surface within the investigated substrate temperatures but that the morphology of these thin films varies with substrate temperature. The shorter n-C36H74 molecules are partially laterally oriented at low substrate temperature and are completely normally oriented at high substrate temperature. The relative magnitude of "side-by-side" and "end-to-end" intermolecular interactions leads to the formation of highly ordered alkane structures with a high aspect ratio. The formation of complex, nanoscale orientational morphologies are rationalized by considering kinetic and thermodynamic effects, in particular, the relative enthalpic and entropic contributions to the free energy associated with the different molecular orientations.  相似文献   

3.
The model of a thin film sandwiched between two parallel planes the gap between which is filled with the melt of diblock copolymers is revisited. One of the planes (a supporting plane) has a pattern, whereas the other plane (an upper) is uniform. The proposed model is based on mean self-consistent field concepts. The parameters of diblock copolymers are selected so that the melt of diblock copolymers yields a hexagonal morphology in its volume. The upper boundary of the film and support avoid contact with the minor component of the diblock copolymer; as a result, in the film, a hexagonal morphology parallel to the support is formed. When hexagonal and rectangular patterns with preferential interaction with the minor component (the period of patterns coincides with the period of hexagonal symmetry in the volume), the hexagonal morphology changes its orientation from parallel to perpendicular relative to the support. The hexagonal morphology changes its orientation at sufficiently strong interaction between the pattern and minor component. Structural factor is calculated, and characteristic features in the location of peaks for perpendicular and parallel phases of hexagonal morphology are found. The development of additional peaks in the structural factor comes from deformations induced by the interaction between components of the melt of diblock copolymers with the upper boundary, support, and pattern.  相似文献   

4.
The transition of crystalline morphology is revealed in poly(?‐caprolactone) (PCL) thin films as the polymer film thickness changes from hundreds of nanometers to several nanometers. The PCL can crystallize into spherulites, dense‐branching morphology (DBM), or dendrites, depending on the polymer film thickness. It was found that when the polymer film thickness approaches 2Rg (radius of gyration of polymer), there is a remarkable change in crystalline morphology. Under this condition, the polymer crystallization is a diffusion‐controlled process. When the value of polymer film thickness closes to Rg, PCL cannot crystallize, and a dewetting phenomenon will take place. Moreover, polymer morphology can be controlled by varying supercooling. The effect of molecular weight on polymer morphology has been investigated. The main factors that affected pattern formation in nonequilibrium crystallization are also discussed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1303–1309, 2005  相似文献   

5.
Double-scale composite lead zirconate titanate Pb(Zr0.52Ti0.48)O3 (PZT) thin films of 360 nm thickness were prepared by a modified composite sol-gel method. PZT films were deposited from both the pure sol and the composite suspension on Pt/Al2O3 substrates by the spin-coating method and were sintered at 650°C. The composite suspension formed after ultrasonic mixing of the PZT nanopowder and PZT sol at the powder/sol mass concentration 0.5 g mL−1. PZT nanopowder (≈ 40–70 nm) was prepared using the conventional sol-gel method and calcination at 500°C. Pure PZT sol was prepared by a modified sol-gel method using a propan-1-ol/propane-1,2-diol mixture as a stabilizing solution. X-ray diffraction (XRD) analysis indicated that the thin films possess a single perovskite phase after their sintering at 650°C. The results of scanning electron microscope (SEM), energy-dispersive X-ray (EDX), atomic force microscopy (AFM), and transmission electron microscopy (TEM) analyses confirmed that the roughness of double-scale composite PZT films (≈ 17 nm) was significantly lower than that of PZT films prepared from pure sol (≈ 40 nm). The composite film consisted of nanosized PZT powder uniformly dispersed in the PZT matrix. In the surface micrograph of the film derived from sol, large round perovskite particles (≈ 100 nm) composed of small spherical individual nanoparticles (≈ 60 nm) were observed. The composite PZT film had a higher crystallinity degree and smoother surface morphology with necklace clusters of nanopowder particles in the sol-gel matrix compared to the pure PZT film. Microstructure of the composite PZT film can be characterized by a bimodal particle size distribution containing spherical perovskite particles from added PZT nanopowder and round perovskite particles from the sol-matrix, (≈ 30–50 nm and ≈ 100–120 nm), respectively. Effect of the PZT film preparation method on the morphology of pure and composite PZT thin films deposited on Pt/Al2O3 substrates was evaluated.  相似文献   

6.
The structural properties of coevaporated thin films of pentacene (PEN) and perfluoropentacene (PFP) on SiO(2) were studied using x-ray reflectivity and grazing incidence x-ray diffraction. Reciprocal space maps of the coevaporated thin films with different volume fractions reveal the coexistence of two different molecular mixed PEN-PFP phases together with the pure PEN and PFP crystallites. The crystal structure of PEN:PFP blends does not change continuously with volume fraction, instead the proportion of the appropriate phases changes, as seen from the diffraction analysis. Additional temperature dependent experiments reveal that the fraction of the two mixed PEN-PFP phases varies with growth temperature. The λ-phase (molecular plane parallel to the substrate) is metastable and induced by low growth temperature. The σ-phase (molecular plane nearly perpendicular to the substrate) is thermally stable and nucleates predominantly at high growth temperatures.  相似文献   

7.
Hole formation and growth on the top layer of thin symmetric diblock copolymer films, forming an ordered lamellar structure parallel to the solid substrate (silicon wafer) within these films, is investigated as a function of time (t), temperature (T), and film thickness (l), using a high-throughput experimental technique. The kinetics of this surface pattern formation process is interpreted in terms of a first-order reaction model with a time-dependent rate constant determined uniquely by the short-time diffusive growth kinetics characteristic of this type of ordering process. On the basis of this model, we conclude that the average hole size, lambda(h), approaches a steady-state value, lambda(h)(t-->infinity) identical with lambda(h,infinity)(T), after long annealing times. The observed change in lambda(h,infinity)(T) with temperature is consistent with a reduction of the surface elasticity (Helfrich elastic constant) of the outer block copolymer layer with increasing temperature. We also find that the time constant, tau(T), characterizing the rate at which lambda(h)(t) approaches lambda(h,infinity)(T), first decreases and then increases with increasing temperature. This temperature variation of tau(T) is attributed to two basic competing effects that influence the rate of ordering in block copolymer materials: the reduction in molecular mobility at low temperatures associated with glass formation and a slowing of the rate of ordering due to fluctuation effects associated with an approach to the block copolymer film disordering temperature (T(d)) from below.  相似文献   

8.
The adsorption of 3‐aminopropyltrimethoxysilane thin films on Fe? 18Cr? 7Mn? 3Ni (austenitic stainless steel) was investigated by X‐ray photoelectron spectroscopy (XPS) and inelastic electron background analysis. The bonding and morphology of the films were strongly dependent on the surface hydroxyl concentration, which was controlled by the oxidation pretreatment of the substrate. In particular, an aminopropylsilane (APS) monolayer with high degree of bonding to the substrate was obtained on an electrochemically passivated surface with very high hydroxyl concentration. On the other hand, the deposition of weakly bound APS clusters was observed on substrates having relatively low hydroxyl concentrations. The adsorption occurred initially via hydrogen bonding, whereas heating to 373 K resulted in the formation of covalent Si? O? M bonds at the silane/metal oxide interface. The results of this study provide insight into the interaction between silanes and stainless steels surfaces, and can be applied for functionalization of stainless steel materials in an extensive range of applications. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
We demonstrate a general approach for attaining the bottom morphology of block copolymer(BCP) thin films. In our former measurements on PS-b-PMMA films, surface morphology maps of the BCP films revealed distinct ordering regimes where the cylinders orient predominantly perpendicular or parallel to the interface and an ‘intermediate' regime where these morphologies coexist. However, this earlier work did not explore the bottom morphology of BCP thin films. In this study, we investigated the block copolymer morphology near the solid substrate in the cast block copolymer film having a perpendicular cylinder morphology on the surface.  相似文献   

10.
Biological research has shown good cell response to dense TiO2 films. Good surface chemistry of the implant can be further improved by introducing optimal topology, which in the case of osseointegration means porosity features in the nm and ??m range. TiO2 films are produced by spin coating and the obtained morphologies are characterized qualitatively and quantitatively from the scanning electron microscope images of the surface and in focused ion beam cross-sections. Infrared spectroscopy, thermogravimetry/differential thermal analysis, and X-ray diffraction were used to characterize chemical changes and crystallization processes in the bulk gels and thin films. Mechanical properties of the films are characterized using Nano Scratch Test. Results show that the increase in acetyl acetone (ACAC) concentration from 1?mol ACAC:1?mol Ti(IV) n-butoxide used for dense films to 1.5:1 and simultaneous polyethylene glycol (PEG) presence led to a change in morphology from a dense to highly porous, co-continuous morphology. This is a result of pronounced phase separation with respect to gelation due to (1) the presence of uncomplexed ACAC, which is highly dissimilar, in a sense of polarity, to the other components of the sol and (2) the additional reaction between PEG and TiO2 oligomers. This porous morphology is found to be very sensitive to production parameters such as viscosity, spinning velocity and the amount of PEG added to the sol. It was also detected that, in addition to the phase separation, PEG also influences the crystallization process of the film.  相似文献   

11.
The surface morphology of poly(cyano-p-xylylene) thin films of different thicknesses (25–1500 nm or more than 5 μm) that were synthesized by vapor-deposition polymerization on the substrate surface in the temperature range from −22 to +35°C has been studied by atomic force microscopy. The surface topography is quantified through analysis of the height-height correlation function. The surface of all films is characterized by a similar granular morphology with a transverse size of granules of 50–500 nm. The surface morphology changes with the polymerization temperature (the substrate temperature) and the film thickness. The effect of film annealing on its surface morphology is considered. It has been established that annealing at 200°C leads to a change in the surface morphology of the films. Original Russian Text ? A.I. Buzin, D.S. Bartolome, K.A. Mailyan, A.V. Pebalk, S.N. Chvalun, 2006, published in Vysokomolekulyamye Soedineniya, Ser. A, 2006, Vol. 48, No. 9, pp. 1640–1646. This work was supported by the Russian Foundation for Basic Research (project nos. 03-03-32665 and 03-03-32634) and the Russian Science Support Foundation.  相似文献   

12.
Transparent nanocrystalline zirconia thin films were prepared by sol–gel dip coating technique using Zirconium oxychloride octahydrate as source material on quartz substrates, keeping the sol at room temperature (SET I) and 60 °C (SET II). X-ray diffraction (XRD) pattern shows the formation of mixed phase [tetragonal (T) + monoclinic (M)] in SET I and a pure tetragonal phase in SET II ZrO2 thin films annealed at 400 °C. Phase transformation from tetragonal to monoclinic was achieved in SET II film annealed at 500 °C. Atomic force microscopy analysis reveals lower rms roughness and skewness in SET II film annealed at 500 °C indicating better optical quality. The transmittance spectra gives a higher average transmittance >85% (UV–VIS region) in SET II films. Optical spectra indicate that the ZrO2 films contain direct—band transitions. The sub- band in the monoclinic ZrO2 films introduced interstitial Odefect states above the top of the valance band. The energy bandgap increased (5.57–5.74 eV) in SET I films and decreased (5.74–5.62 eV) in SET II films, with annealing temperature. This is associated with the variations in grain sizes. Photoluminescence (PL) spectra give intense band at 384 and 396 nm in SET I and SET II films, respectively. A twofold increase in the PL intensity is observed in SET II film. The “Red” shift of SET I films and “Blue” shift of SET II films with annealing temperature, originates from the change of stress of the film due to lattice distortions.  相似文献   

13.
The modulus and glass transition temperature (Tg) of ultrathin films of polystyrene (PS) with different branching architectures are examined via surface wrinkling and the discontinuity in the thermal expansion as determined from spectroscopic ellipsometry, respectively. Branching of the PS is systematically varied using multifunctional monomers to create comb, centipede, and star architectures with similar molecular masses. The bulk‐like (thick film) Tg for these polymers is 103 ± 2 °C and independent of branching and all films thinner than 40 nm exhibit reductions in Tg. There are subtle differences between the architectures with reductions in Tg for linear (25 °C), centipede (40 °C), comb (9 °C), and 4 armed star (9 °C) PS for ≈ 5 nm films. Interestingly, the room temperature modulus of the thick films is dependent upon the chain architecture with the star and comb polymers being the most compliant (≈2 GPa) whereas the centipede PS is most rigid (≈4 GPa). The comb PS exhibits no thickness dependence in moduli, whereas all other PS architectures examined show a decrease in modulus as the film thickness is decreased below ~40 nm. We hypothesize that the chain conformation leads to the apparent susceptibility of the polymer to reductions in moduli in thin films. These results provide insight into potential origins for thickness dependent properties of polymer thin films. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

14.
We report some preliminary results on the morphology of thin N,N -dimethyl-n-octadecyl-3-aminopropyltrimethoxysilyl chloride (DMOAP) films. When deposited on a glass substrate, DMOAP forms a mono- or multi-layer structure parallel to the substrate. The surface topography of the film is probed by atomic force microscopy. In general, the free surface of such a film is not flat and smooth. Islands and holes are formed on the free surface of the films when a sufficiently flat substrate is used. The thin film surface topography depends strongly on the nature of the bare substrate, the curing conditions, and the immersion time of the substrate in the DMOAP solution. The film is always rougher than the bare substrate used. Annealing roughens the surface of the alkoxysilane thin films deposited on a glass substrate. For films on glass plates covered with an indium tin oxide layer, annealing has minor effects. The surface topography affects the microstructure of homeotropic smectic samples.  相似文献   

15.
I. Lelidis  C.   edman 《Liquid crystals》2003,30(6):643-649
We report some preliminary results on the morphology of thin N,N -dimethyl- n -octadecyl-3-aminopropyltrimethoxysilyl chloride (DMOAP) films. When deposited on a glass substrate, DMOAP forms a mono- or multi-layer structure parallel to the substrate. The surface topography of the film is probed by atomic force microscopy. In general, the free surface of such a film is not flat and smooth. Islands and holes are formed on the free surface of the films when a sufficiently flat substrate is used. The thin film surface topography depends strongly on the nature of the bare substrate, the curing conditions, and the immersion time of the substrate in the DMOAP solution. The film is always rougher than the bare substrate used. Annealing roughens the surface of the alkoxysilane thin films deposited on a glass substrate. For films on glass plates covered with an indium tin oxide layer, annealing has minor effects. The surface topography affects the microstructure of homeotropic smectic samples.  相似文献   

16.
We have investigated the selective electroless deposition (ELD) of Cu on functionalized self-assembled monolayers (SAMs). Previous studies have demonstrated that Cu deposits on -COOH and -CH(3) terminated SAMs using ELD. However, the deposited films were rough and contained irregular crystallites. Further, the copper penetrated through the film. In this Article, we demonstrate that copper can be selectively deposited on -COOH terminated SAMs with improved morphology and without penetration of copper through the organic layer. The method employs a Cu(II) seed layer and an additive, adenine or guanine. We demonstrate the efficacy of the technique on photopatterned -CH(3)/-COOH SAMs. Copper is observed to deposit only atop the -COOH terminated SAM area and not on the -CH(3) terminated SAM. The use of a Cu(II) seed layer increased the Cu ELD rate on both -COOH and -CH(3) terminated SAMs. The deposited copper layer strongly adheres to the -COOH terminated SAMs because the copper layer nucleates at Cu(2+)-carboxylate complexes. In contrast, the deposited copper layer can easily be removed from the -CH(3) terminated SAM surface because there is no specific copper-surface interaction. The additives adenine and guanine mediate the interaction of Cu(2+) and the deprotonated -COOH terminated SAMs via the formation of additive-carboxylate complexes. These complexes lead to significantly reduced copper penetration through the SAM. In the case of adenine, the diffusion of copper through the organic film was eliminated. This new technique for copper deposition will facilitate the development of inexpensive molecular electronics, sensors, and other nanotechological devices.  相似文献   

17.
Based on the linear stability and nonlinear simulations, we show that the surface instability, dynamics, and morphology of supported thin liquid films are profoundly altered by the presence of slippage on the substrate. A general dispersion equation for flow in slipping thin films is derived and simplified to identify three different regimes of slippage (weak, moderate, and strong) and obtain the length and time scales of instability in them. For illustration, the ubiquitous van der Waals interactions have been employed. Different regimes of slip-flow can be predicted based on a nondimensional parameter, xi, which is a function of slip length, film thickness, intermolecular potential, and interfacial tension. Two distinct transitions from weak to moderate slip and from moderate to strong slip occur at xiT1 approximately 0.01 and xiT2 approximately 500, respectively. More specifically, a decrease in film thickness causes transitions from weak to moderate to strong slip regime. Even a weak slippage causes faster breakup of a thin film, whereas slippage beyond a transition value (slip length, bT1) increases the length scale of instability and reduces the number density of holes compared to the nonslipping case. Strong slippage produces holes faster, and the holes are fewer in number and have less developed rims. The exponents for the length scale (lambdam infinity h0n; h0 is film thickness) and time scale of instability (tr infinity h0m) change nonmonotonically with slippage (for nonretarded van der Waals instability, n E (1.25, 2), m E (3, 6)). Retardation in van der Waals potential increases the exponents (n E (1.5, 2.5), m E (5, 8)). The initial stage of evolution of a slipping film, simulated based on nonlinear equations, follows the length scale and time scale of instability, close to the prediction of linear analysis. It is hoped that the present analysis will help in better interpretation of thin film experiments, in estimation of slippage, and in the determination of intermolecular forces from the length and time scales of the instability.  相似文献   

18.
This review provides a general introduction to organic field-effect transistors and their application as chemical sensors. Thin film transistor device performance is greatly affected by the molecular structure and morphology of the organic semiconductor layer. Various methods for organic semiconductor deposition are surveyed. Recent progress in the fabrication of organic thin film transistor sensors as well as the correlation between morphology and analyte response is discussed.  相似文献   

19.
We present the results of a study of the morphology of phase separation in a thin film blend of polystyrene (PS) and polyisoprene (PI) in a common solvent of toluene. The blend is quenched by rapid solvent evaporation using a spincoating technique rather than a temperature quench. The mass fraction of polystyrene is varied to determine the effect of the substrate on thin film phase separation morphology. We compare the phase separation morphology for very thin films of the PS/PI blend cast onto three different substrates: Si(001) with a native oxide layer (Si (SINGLEBOND) SiOx), Si(001) etched in hydrofluoric acid (Si-H), and a Au/Pd alloy sputtered onto Si(001). We observe large differences between the morphologies of 1000 Å thick blend films on the Si(SINGLEBOND) SiOx and Si-H substrates as the mass fraction is varied due to the difference in the wetting properties of PS on the two substrates. Smaller differences are observed between the films on the Si(SINGLEBOND) SiOx and Au/Pd substrates only for film thicknesses h < 600 Å. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
We calculate the free energy of an AB diblock copolymer thin film of cylindrical morphology under confined geometry and find that the size of the cylinder can be asymmetric, depending on the film thickness and surface tension. The size of the cylinder right above the surface is slightly smaller than that of the other cylinders. The equilibrium period in this thin film is different from that in the bulk because of the surface effect. The tendency toward asymmetry diminishes as the film thickness increases and the interfacial tension between the major block (A) and the substrate decreases. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2217–2224, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号