首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A loop resonator for slice-selective in vivo EPR imaging in rats   总被引:2,自引:1,他引:1  
A loop resonator was developed for 300 MHz continuous-wave electron paramagnetic resonance (CW-EPR) spectroscopy and imaging in live rats. A single-turn loop (55 mm in diameter) was used to provide sufficient space for the rat body. Efficiency for generating a radiofrequency magnetic field of 38 microT/W(1/2) was achieved at the center of the loop. For the resonator itself, an unloaded quality factor of 430 was obtained. When a 350 g rat was placed in the resonator at the level of the lower abdomen, the quality factor decreased to 18. The sensitive volume in the loop was visualized with a bottle filled with an aqueous solution of the nitroxide spin probe 3-carbamoyl-2,2,5,5-tetramethyl-3-pyrrolin-1-yloxy (3-CP). The resonator was shown to enable EPR imaging in live rats. Imaging was performed for 3-CP that had been infused intravenously into the rat and its distribution was visualized within the lower abdomen.  相似文献   

2.
The design and structure of a bridged loop-gap surface resonator developed for topical EPR spectroscopy and imaging of the distribution and metabolism of spin labels in in vivo skin is reported. The resonator is a one-loop, one-gap bridged structure. A pivoting single loop-coupling coil was used to couple the microwave power to the loop-gap resonant structure. A symmetric coupling circuit was used to achieve better shielding and minimize radiation. The frequency of the resonator can be easily adjusted by trimming the area of the capacitive foil bridge, which overlaps the gap in the cylindrical loop. The working frequency set was 2.2 GHz and the unloaded Q was 720. The B1 field of this resonator was measured and spatially mapped by three-dimensional EPR imaging. The resonator is well suited to topical measurements of large biological subjects and is readily applicable for in vivo measurements of free radicals in human skin.  相似文献   

3.
For whole body EPR imaging of small animals, typically low frequencies of 250-750 MHz have been used due to the microwave losses at higher frequencies and the challenges in designing suitable resonators to accommodate these large lossy samples. However, low microwave frequency limits the obtainable sensitivity. L-band frequencies can provide higher sensitivity, and have been commonly used for localized in vivo EPR spectroscopy. Therefore, it would be highly desirable to develop an L-band microwave resonator suitable for in vivo whole body EPR imaging of small animals such as living mice. A 1.2 GHz 16-gap resonator with inner diameter of 42 mm and 48 mm length was designed and constructed for whole body EPR imaging of small animals. The resonator has good field homogeneity and stability to animal-induced motional noise. Resonator stability was achieved with electrical and mechanical design utilizing a fixed position double coupling loop of novel geometry, thus minimizing the number of moving parts. Using this resonator, high quality EPR images of lossy phantoms and living mice were obtained. This design provides good sensitivity, ease of sample access, excellent stability and uniform B(1) field homogeneity for in vivo whole body EPR imaging of mice at 1.2 GHz.  相似文献   

4.
A main electromagnet optimized for electron paramagnetic resonance (EPR) measurements of rats by using a surface loop resonator with a loop diameter of 10?mm was designed. The fabricated main electromagnet was ca. 420?mm in diameter, ca. 240?mm in width, and ca. 60?kg in weight. When a static magnetic field of 25?mT was generated at the center of the main electromagnet, its deviation in a sphere space with a diameter of 10?mm was <0.02?mT. In this condition, the temperature elevation on the surface of the magnet was negligible for the measurement time assumed for in vivo study. Using this magnet, a bench-top type in vivo EPR spectrometer could be obtained, which made it possible to perform EPR measurements for estimating the renal reducing ability of a rat.  相似文献   

5.
An improved external loop resonator (ELR) used for L-band electron paramagnetic resonance (EPR) spectroscopy is reported. This improvement is achieved by shortening the parallel coaxial line. The resonant structure is formed by two single turn coils (10mm in diameter) that are connected to a parallel coaxial line. A resonance frequency of 1197 MHz and a quality factor of 466 were obtained in the absence of biological tissue and were approximately 1130 MHz and approximately 50 with a living animal, respectively. The sensitivity of the new ELR was compared to the previously developed ELR using three types of EPR samples: (1) paramagnetic material with no biological tissue, (2) paramagnetic material in a leg and in the peritoneal cavity of a dead rat, and (3) paramagnetic material in the back of an anesthetized rat. The sensitivity was 1.2-1.6 times greater in the rat and 4.2 times without tissue.  相似文献   

6.
Continuous-wave EPR spectroscopy using a frequency modulation (FM) scheme was developed. An electronically tunable resonator and an automatic tuning control (ATC) system were used. Using the FM scheme instead of magnetic field modulation, we detected EPR absorption at the first derivative mode. We used a microwave frequency of 1.1 GHz in the present experiment. Similar signal-to-noise ratios were obtained with conventional field modulation and the FM method, and a low-quality factor EPR resonator was not necessary to suppress the significant microwave reflection from the resonator. The FM method with a tunable resonator may be an alternative solution to achieving phase-sensitive detection, when the side-effects of magnetic field modulation, such as microphonic noise and mechanical vibration, are detrimental for EPR detection.  相似文献   

7.
Stochastic excitation with a full-width-half-maximum bandwidth of 250 MHz was used to perform Fourier-transform (FT) high-field/high-frequency electron paramagnetic resonance (EPR) at 3.4T/95 GHz (W-band). Thereby, the required microwave peak power is reduced by a factor of tau(p)/T1 as compared to equivalent pulsed FT EPR in which the spin system with spin-lattice relaxation time T1 is excited by a single microwave pulse of length tau(p). Stochastic EPR is particularly interesting under high-field/high-frequency conditions, because the limited output power of mm microwave sources, amplifiers, and mixers makes pulse FT EPR in that frequency domain impossible, at least for the near future. On the other hand, FT spectroscopy offers several advantages compared to field-swept magnetic resonance methods, as is demonstrated by its success in NMR and X-band EPR. In this paper we describe a novel stochastic W-band microwave bridge including a bimodal induction mode transmission resonator that serves for decoupling the microwave excitation and signal detection. We report first EPR measurements and discuss experimental difficulties as well as achieved sensitivity. Moreover, we discuss future improvements and the possibility for an application of stochastic W-band FT EPR to transient signals such as those of photoexcited radical pairs in photosynthetic reaction centers.  相似文献   

8.
Sample motion, particularly that of a beating heart, induces baseline noise and spectral distortion on an EPR spectrum. In order to quench motional noise and restore the EPR signal amplitude and line-width, an L-band transverse oriented electric field re-entrant resonator (TERR) was designed and constructed with provisions for automatic tuning control (ATC) and automatic coupling control (ACC) suited for studies of isolated beating rat hearts. Two sets of electronic circuits providing DC biased voltage to two varactor diodes were implemented to electronically adjust coupling and tuning. The resonator has a rectangular cross-sectional sample arm of 25 mm diameter with a Q value of 1100 without sample. Once inserted with lossy aqueous samples of 0.45% NaCl, Q value drops to 400 with a volume of 0.5 ml and 150 with 5 ml. The ATC/ACC functions were tested with a moving phantom and isolated beating rat hearts with the improvement of signal to noise ratio (S/N, peak amplitude of signal over peak amplitude of baseline noise) of 6.7-, and 4 to 6-fold, respectively. With these improvements, EPR imaging could be performed on an isolated beating rat heart. Thus, this TERR resonator with ATC/ACC enables application of EPR spectroscopy and imaging for the measurement and imaging of radical metabolism, redox state, and oxygenation in the isolated beating rat heart.  相似文献   

9.
This paper investigates basic characteristics of the electron paramagnetic resonance (EPR) signal obtained from spectrometers employing reflection resonators. General equations are presented which reveal the phase and amplitude dependence on instrumental parameters of both components of the continuous wave (CW) EPR signal (absorption and dispersion). New phase vector diagrams derived from these general equations are presented for the analysis of the EPR response. The dependence of the phase and absolute value of the CW EPR signal on the local oscillator (LO) phase and on resonator offset and coupling is presented and analyzed. The EPR spectrometer tuning procedures for both balanced and unbalanced heterodyne receivers are analyzed in detail using the new phase diagrams. Extraneous signals at the RF input of the microwave receiver (resulting from circulator leakage and reflections in the resonator transmission line) have been taken into account and analyzed. It is shown that a final tuning condition that corresponds to an extremum of the receiver output as a function of the resonator frequency is necessary and sufficient for the acquisition of pure absorption signal. This condition is universal: it applies to all spectrometer configurations in all frequency ranges. High Frequency EPR spectrometer (130 GHz) data are used to generate experimental phase diagrams that illustrate the theoretical concepts presented in the paper. Conditions are presented under which the absorption signal can be measured with complete suppression of the dispersion, independent of the mutual frequency offset between the microwave source and the EPR sample resonator. Equations describing the approximate relationship between changes of the resonator properties (Q-factor and frequency) and paramagnetic susceptibility are derived and analyzed.  相似文献   

10.
In order to study the depth-dependent characteristics of open-volume defects in thin surface layers, the variable-energy positron lifetime spectroscopy (VEPLS) has been enabled by pulsing a continuous positron beam. The buncher is a quarter-wave coaxial resonator and the RF-signal is fed in by a coupling loop with a frequency of 149.89 MHz and the reflection factor of 0.05 measured by a Network Analyzer. Three synchronic signals with their phases and amplitudes adjusted independently are supplied for start signal of the positron lifetime measurement and the power signal by an electronic system. The stop signal is derived from a detector, a BaF2 scintillator coupled to a photomultiplier-tube (Hamamatsu). The time resolution of 295 ps (FWHM) was achieved for a Kapton film and a Ti sample at positron energies in the range between 1 keV and 30 keV.  相似文献   

11.
A novel waveguide ring resonator optical sensor with two resonant wavelength channels is proposed for a refractive index measurement of a test sample placed on the sensor substrate and its performance characteristics are investigated analytically and numerically. The waveguide device consists of a ring resonator, a split-ring-shaped loop waveguide, and a vertical input/output grating coupler, in which the loop waveguide acts as an additional resonator and provides another output wavelength channel of the sensor. The differential detection between the two wavelength channels enables the highly sensitive detection with temperature compensation. A numerical simulation based on a finite difference time domain (FDTD) method shows that a precise index change detection with a resolution of 10−6 can be achieved using of the proposed device.  相似文献   

12.
Experimental EPR signal intensities at 250 MHz, 1.5 GHz, and 9.1 GHz agree within experimental error with predictions from first principles. When both the resonator size and the sample size are scaled with the inverse of RF/microwave frequency, omega, the EPR signal at constant B(1) scales as omega(-1/4). Comparisons were made for three different samples in two pairs of loop gap resonators. Each pair was geometrically scaled by a factor of 6. One pair of resonators was scaled from 250 MHz to 1.5 GHz, and the other pair was scaled from 1.5 GHz to 9 GHz. All terms in the comparison were measured directly, and their uncertainties estimated. The theory predicts that the signal at the lower frequency will be larger than the signal at the higher frequency by the ratio 1.57. For 250 MHz to 1.5 GHz, the experimental ratio was 1.52 and for the 1.5-GHz to 9-GHz comparison the ratio was 1.14.  相似文献   

13.
High-quality YBaCuO films are used to sequentially prepare a 10-GHz disk resonator and a planar inductance coil. The Q factor of the planar inductance coil at its resonance frequency (64 MHz) is much higher than the values reported for analogous structures. The measurement results are used to estimate the surface resistance of the films at frequencies of 10 GHz and 64 MHz. The surface resistance measured at 64 MHz is more than fourfold of that calculated from the surface resistance measured at 10 GHz by the dependence R sur ∼ ω2. Our analysis demonstrates that extrinsic factors cannot substantially affect the measurement results; therefore, the deviation from the R sur ∼ ω2 dependence in the megahertz range is determined by the intrinsic properties of the superconducting strip.  相似文献   

14.
Stable L-alanine radicals, SAR1 and SAR2, induced by γ-irradiation of the L-alanine crystal have been investigated by electron paramagnetic resonance (EPR) technique at W-band (94 GHz) frequency. The study provides assignment of radical centers detected by continuous-wave EPR, saturation transfer mode and echo-detected field-swept EPR at W-band frequencies. The phase memory time, T m, which was measured simultaneously at X-band (9.5 GHz) and W-band frequencies for different spectral components has been employed to estimate rotation correlation times of CH3 protons and an effective correlation time related to the local dynamics of the entire SAR1 center at room temperature.  相似文献   

15.
Spin-label W-band (94 GHz) electron paramagnetic resonance (EPR) with a five-loop–four-gap resonator (LGR) was successfully applied to study membrane properties (Mainali et al. J Magn Reson 226:35–44, 2013). In that study, samples were equilibrated with the selected gas mixture outside the resonator in a sample volume ~100 times larger than the sensitive volume of the LGR and transferred to the resonator in a quartz capillary. A seven-loop–six-gap W-band resonator has been developed. This resonator permits measurements on aqueous samples of 150 nL volume positioned in a polytetrafluoroethylene (PTFE) gas permeable sample tube. Samples can be promptly deoxygenated or equilibrated with an air/nitrogen mixture inside the resonator, which is significant in saturation-recovery measurements and in spin-label oximetry. This approach was tested for lens lipid membranes derived from lipids extracted from two porcine lenses (single donor). Profiles of membrane fluidity and the oxygen transport parameter were obtained from saturation-recovery EPR using phospholipid analog spin-labels. Cholesterol analog spin-labels allowed discrimination of the cholesterol bilayer domain and acquisition of oxygen transport parameter profiles across this domain. Results were compared with those obtained previously for membranes derived from a pool of 100 lenses. Results demonstrate that EPR at W-band can be successfully used to study aqueous biological samples of small volume under controlled oxygen concentration.  相似文献   

16.
The automatic frequency control (AFC) circuit in conventional electron paramagnetic resonance (EPR) spectrometers automatically tunes the microwave source to the resonance frequency of the resonator. The circuit works satisfactorily for samples stable enough that the geometric relations in the resonance structure do not change in a significant way. When EPR signals are measured during in vivo experiments with small rodents, however, the distance between the signal source and the surface-coil detector can change rapidly. When a conventional AFC circuit keeps the oscillator tuned to the resonator under those conditions, the resultant frequency change may exceed +/-5 MHz and markedly shift the position of the EPR signal. Such a shift results in unacceptable effects on the spectra, especially when the experimenter is dealing with narrow EPR lines. The animal movement also causes a mismatching of the resonator and the 50-ohm transmission line. Direct results of this mismatching are increased noise; shifts in the position of the baseline; and a high probability of overdriving the signal preamplifier with consequent loss of the EPR signal. We therefore designed, built, and tested a new surface-coil resonator using varactor diodes for tuning the resonance frequency to the fixed frequency oscillator and for capacitive matching of the resonator to the 50-ohm transmission line. The performance of the automatic matching system was tested in vivo by measuring EPR spectra of lithium phthalocyanine implanted in rats. Stability and sensitivity of the spectrometer were evaluated by measuring EPR spectra with and without the use of the automatic matching system. The overall experimental performance of the spectrometer was found to significantly improve during in vivo experiments using the automatic matching system. Excellent matching between the 50-ohm transmission line and the resonator was maintained under all experimental circumstances that were tested. This should allow us now to carry out experiments that previously were not possible.  相似文献   

17.
This article reports experimental investigations on the use of RF resonators for continuous-wave electron paramagnetic resonance (cw-EPR) and proton nuclear magnetic resonance (NMR) imaging. We developed a composite resonator system with multi-coil parallel-gap resonators for co-registration EPR/NMR imaging. The resonance frequencies of each resonator were 21.8MHz for NMR and 670MHz for EPR. A smaller resonator (22mm in diameter) for use in EPR was placed coaxially in a larger resonator (40mm in diameter) for use in NMR. RF magnetic fields in the composite resonator system were visualized by measuring a homogeneous 4-hydroxy-2,2,6,6-tetramethyl-piperidinooxy (4-hydroxy-TEMPO) solution in a test tube. A phantom of five tubes containing distilled water and 4-hydroxy-TEMPO solution was also measured to demonstrate the potential usefulness of this composite resonator system in biomedical science. An image of unpaired electrons was obtained for 4-hydroxy-TEMPO in three tubes, and was successfully mapped on the proton image for five tubes. Technical problems in the implementation of a composite resonator system are discussed with regard to co-registration EPR/NMR imaging for animal experiments.  相似文献   

18.
Methods proposed for in vivo redox status estimation, X-band (9.4 GHz) electron paramagnetic resonance (EPR) bile flow monitoring (BFM) and 300 MHz in vivo EPR measurement, were compared. The spin probe 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (carbamoyl-PROXYL) was utilized for both methods, due to its suitable lipophilicity. EPR signal decay of a nitroxyl spin probe in the bile flow and in the liver region (upper abdomen) of several rat groups with different selenium status were measured by both the BFM and the in vivo EPR method, respectively. The nitroxyl radical clearance measured with in vivo EPR method may be affected not only by the redox status in the liver but also by information from other tissues in the measured region of the rat. On the other hand, the time course of nitroxyl radical level in the bile flow of rats was found to be a reliable index of redox status. Measurement site and/or volume limitation, which was achieved by the BFM method in this paper, is quite important in estimating reasonable EPR signal decay information as an index of tissue/organ redox status.  相似文献   

19.
Electron paramagnetic resonance (EPR) spin trapping technology is a sensitive and unambiguous method for detection of nitric oxide (NO). Due to the short lifetime, NO must be trapped before EPR measurement. There are two EPR spin trapping techniques used currently, including the detections of EPR signals of diethyldithiocarbamate-iron-nitric oxide (DETC2-Fe2+-NO) and nitrosyl hemoglobin (HbNO). In this study, we firstly investigated the kinetics of the EPR signal of DETC2-Fe2+-NO in normal and ischemia-reperfused kidneys. In normal rat kidneys, the signal of DETC2-Fe2+-NO was found at 5 min after the spin trappers Fe2+/DETC were administrated, the peak concentration was at 15 min and the period with relatively stable signal intensity was at the time range from 15 to 70 min. In the ischemia-reperfused rat kidneys, the signal of DETC2-Fe2+-NO was increased at 30 min of ischemia and decreased at 60 min of ischemia after the occlusion of renal artery (corresponding to the time course of 60 and 90 min after Fe2+/DETC injection respectively). We then investigated the EPR signal of HbNO in blood. No characteristic HbNO signal was found in the rats of the sham control and 30 min of ischemia. An HbNO signal occurred in the rats exposed to 60 min of ischemia and it became pronounced with increased duration of reperfusion. The signal intensity reached a plateau at 150 min of reperfusion. The results suggest that the DETC2-Fe2+-NO signal can be only suitable for the NO measurement in the short-term ischemia-reperfusion model, whereas the HbNO signal can be applied to represent NO in the relatively long-term ischemia-reperfusion model. In addition, NG-nitro-L-arginine (L-NAME) and allopurinol were used to identify the source of NO. By detecting the HbNO signal, we demonstrated that the activation of xanthine oxidase is an important source of NO formation at the long-term period of ischemia and reperfusion. Authors' address: Jiangang Shen, School of Chinese Medicine, University of Hong Kong, 10 Sassoon Road, Hong Kong SAR, China  相似文献   

20.
The use of pressure is an advantageous approach to the study of protein structure and dynamics, because it can shift the equilibrium populations of protein conformations toward higher energy states that are not of sufficient population to be observable at atmospheric pressure. Recently, the Hubbell group at the University of California, Los Angeles, reintroduced the application of high pressure to the study of proteins by electron paramagnetic resonance (EPR) spectroscopy. This methodology is possible using X-band EPR spectroscopy due to advances in pressure intensifiers, sample cells, and resonators. In addition to the commercial availability of the pressure generation and sample cells by Pressure Biosciences Inc., a five-loop–four-gap resonator required for the initial high-pressure EPR spectroscopy experiments by the Hubbell group, and those reported here, was designed by James S. Hyde and built and modified at the National Biomedical EPR Center. With these technological advances, we determined the effect of pressure on the essential periplasmic lipopolysaccharide (LPS) transport protein from Escherichia coli, LptA, and one of its binding partners, LptC. LptA unfolds from the N-terminus to the C-terminus, binding of LPS does not appreciably stabilize the protein under pressure, and monomeric LptA unfolds somewhat more readily than oligomeric LptA upon pressurization to 2 kbar. LptC exhibits a fold and relative lack of stability upon LPS binding similar to LptA, yet adopts an altered, likely monomeric, folded conformation under pressure with only its C-terminus unraveling. The pressure-induced changes likely correlate with functional changes associated with binding and transport of LPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号