首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
New cyclopentylidene ring-containing diamino-diesters, 1,1-bis(3-aminobenzoyloxy phenyl) cyclopentane, was prepared through reaction of cyclopentanone with two moles of phenol to yield 1,1-bis (4-hydroxy phenyl) cyclopentane (BHPP) (I), the resulting diol (I) on reaction with 3-nitrobenzoyl chloride in N,N-dimethyl acetamide (DMAc) and triethyl amine yield 1,1-bis(3-nitrobenzoyloxy phenyl) cyclopentane (II) which on finally reduced by catalytic hydrogenation in presence of 10% Pd/C in DMAc and stirred at room temperature under a 4 kg/cm2 hydrogen pressure yields 1,1-bis(3-aminobenzoyloxy phenyl) cyclopentane (III) (m-BABPP). The structure of novel m-diester-diamine was confirmed by FT-IR, 1H-NMR and 13C-NMR. A series of new m-poly (ester-amide)s and co-poly(ester-amide)s were synthesized by using the solution polycondensation method of novel diamine (III) with IPC and TPC in various mole proportion. These novel polymers were characterized by FTIR spectroscopy, solubility, inherent viscosity and thermal analysis and XRD studies. Inherent viscosities of these polymers were in the range 0.30 to 0.46 dL/g indicating moderate molecular weight built-up. These polymers exhibited excellent solubility in various polar aprotic solvents such as NMP, Pyridine. These polymers were partially soluble in DMSO, DMAc, DMF etc.

X-Ray diffraction pattern of polymers showed that introduction of cardo moiety containing ester linkage would disturb the chain regularity and packing, leading to amorphous nature. Thermal analysis by TGA showed excellent thermal stability of polymers. The structure -property correlation among these poly(ester-amide)s were studied, in view of these polymer's potential applications as processable high temperature resistance materials.  相似文献   

2.
<正>A series of new optically active poly(amide-imide)s were synthesized by direct polycondensation reaction of 4,4'-diaminochalcone with several N-trimellitylimido-L-amino acids using a tosyl chloride(TsCl),pyridine(Py) and dimethylformamide(DMF) system as condensing agent.The resulting thermally stable poly(amide-imide)s were obtained in good to high yields and inherent viscosities ranging between 0.35 dL/g and 0.58 dL/g and were characterized with FTIR, ~1H-NMR,CHN,Ultraviolet,TGA and DTG techniques.  相似文献   

3.
A series of novel aliphatic aromatic poly(ester-amide)s (PEA) have been synthesized by condensation reaction of aromatic bisoxazolines with aliphatic dicarboxylic compounds. These polymers have a number average molecular weight of 20,000-25,000. Depending of the aromatic structure of the bisoxazoline precursor, they are either amorphous or semi-crystalline. A good solubility in aprotic solvents was observed for all PEAs.  相似文献   

4.
A series of new poly(arylene ether)s, containing naphthalene, pyridine, and quinoline units have been prepared by solution condensation polymerization. The synthesis involves nucleophilic displacement of aromatic dihalides with aromatic potassium bisphenates in an anhydrous dipolar aprotic solvent at elevated temperatures. The polymers, having inherent viscosity from 0.24 to 1.32 dL/g, were obtained in quantitative yield, have excellent thermal stability as shown by 10% weight loss temperatures in nitrogen and air (above 450 and 430°C, respectively) and high glass transition temperatures (in the range of 150–220°C). The introduction of quinoline moieties in the polymer backbone positively influences the thermal properties, such as high Tg/Tm ratios. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
A series of novel poly(aryl ether nitrile)s containing phthalazinone moiety were synthesized by the nucleophilic displacement reaction of bisphenol-like monomers (I) with 2,6-difluorobenzonitrile. The inherent viscosities ranged from 0.46 to 1.07 dL g^-1. The glass transition temperatures were in the range of 277-295℃, and the temperatures for 10% weight loss in nitrogen atmosphere were found between 495 and 527 ℃. The structures of these resultant polymers were confirmed by FT-IR and 1^H NMR. Moreover, the properties of poly(aryl ether nitrile)s including solubility and crystallinity were also studied.  相似文献   

6.
Two new diacid monomers, 2,2′-sulfide bis(4-methyl phenoxy acetic acid) and 2,2′-sulfoxide bis(4-methyl phenoxy acetic acid) were successfully synthesized by refluxing the 2,2′-sulfide bis(4-methyl phenol) and 2,2′-sulfoxide bis(4-methyl phenol) with chloroacetonitrile in the presence of potassium carbonate, and subsequent basic reduction. Two novel series of poly(sulfide-ether-amide)s and poly(sulfoxide-ether-amide)s with aliphatic units in the main chain were prepared from diacids with various diamines.The polyamides were obtained in quantitative yields and their inherent viscosities were in the range of 0.43-0.89 dl g−1 at a concentration of 0.5 g dl−1 in N,N-dimethylacetamide (DMAc) solvent at 25 °C. They showed good thermal stability. The temperature for 10% weight loss in argon atmosphere was in the range of 350-415 °C. The polymers showed glass transition temperatures between 228 and 261 °C. Almost all of the polyamides were readily soluble in a variety of polar solvents such as N-methyl-2-pyrrolidone (NMP) and dimethyl sulfoxide (DMSO).  相似文献   

7.
梁璐  刘白玲  陈华林  徐前 《合成化学》2005,13(5):483-485
以顺丁烯二酸酐、二乙醇胺、邻苯二甲酸酐等为原料,利用官能团活性的差异,通过逐步展开的方法合成了含有双键和端羟基的聚(酯-酰胺)型分子结构的超支化大单体(3)。IR分析表明:3的分子末端为大量伯羟基,具有较高的反应活性;3含有可供聚合的乙烯基,将3与其它乙烯基单体共聚可以获得含超支化结构的共合物。  相似文献   

8.
A series of new poly(arylene ether sulfone)s has been obtained by solution condensation polymerisation starting from 1,5- and 2,6-bis-(4-fluorosulfonyl)naphthalene with various aromatic dihydroxy compounds. The polymers, obtained in quantitative yields, possessed inherent viscosities in the range 0.28-0.68 dl g−1, had good thermal stability (10% weight loss temperatures were above 405 and 420 °C respectively in nitrogen and air) and high glass transition temperatures (in the range 217-258 °C). They have been characterised by elemental and infrared analyses, GPC and wide-angle X-ray diffraction. The properties of these poly(arylene ether sulfone)s have been compared with those of the corresponding poly(arylene ether ketone)s.  相似文献   

9.
A series of new poly(amide imide)s was prepared from new diacid containing sulfone, ether, amide and imide groups with various aromatic diamines. The diacid was synthesized via four steps, starting from reaction of 4-aminophenol with 4-nitrobenzoyl chloride in the presence of propylene oxide afforded N-(4-hydroxy phenyl)-4-nitrobenzamide. In the second step, reduction of nitro group resulted in preparation of 4-amino-N-(4-hydroxy phenyl) benzamide. In the next step for the preparation of diamine, the reaction of 4-amino-N-(4-hydroxy phenyl) benzamide with bis-(4-chlorophenyl) sulfone in the presence of K2CO3 was achieved. The prepared sulfone ether amide diamine was reacted with two moles of trimellitic anhydride to synthesize related sulfone ether amide imide diacid. The precursors and final monomer were characterized by FT-IR, H-NMR and elemental analysis. Direct polycondensation reaction of the sulfone ether amide imide diacid with different diamines in the presence of triphenyl phosphite afforded five different poly (sulfone ether amide imide amide)s. The obtained polymers were fully characterized and their physical properties including thermal behavior, thermal stability, solubility, and inherent viscosity were studied.  相似文献   

10.
Calcium containing poly(urethane-ether)s (PUEs) were synthesized by the reaction of hexamethylene diisocyanate or toluylene 2,4-diisocyanate (HMDI or TDI) with a mixture of calcium salt of mono(hydroxybutyl)phthalate [Ca(HBP)2] and polyethylene glycol (PEG200 or PEG400). A series of calcium containing PUEs having different composition were synthesized by taking the mole ratio of Ca(HBP)2:PEG200 or PEG400:diisocyanate (HMDI or TDI) as 3:1:4, 2:2:4 and 1:3:4 to study the effect of calcium content on the properties of the copolymer. The structure of the polymers were confirmed by IR, 1H-NMR, 13C-NMR, and solid state 13C-CP-MAS NMR. The polymers were soluble in dimethyl sulfoxide and dimethyl formamide. The initial decomposition temperature of the polymers decreases with increase in calcium content. The Tg value of PUEs increases with increase in calcium content and decreases with increase in soft segment content and length. A single Tg value is observed for the calcium containing PUEs based on PEG200 shows the presence of homogeneous phase. However, two Tg values for the PUEs based on PEG400 for various composition of Ca(HBP)2, PEG400 and diisocyanate (HMDI or TDI) shows the presence of heterogeneous phase. The viscosity of the calcium containing PUEs increases with increase in the soft segment content as well as its length and decreases with increase in calcium content. X-ray diffraction patterns of the polymers show that the HMDI based polymers are partially crystalline and TDI based polymers are amorphous in nature. The dynamic mechanical analysis of the calcium containing PUEs based on HMDI shows that at any given temperature modulus (g and g) increases with increase in the ionic content in the polymers.  相似文献   

11.
Unsaturated bisamic acids were prepared by reaction between maleic anhydride and different aromatic diamines. Unsaturated poly(ester-amide) resin (UPEAs) was prepared by reaction of diglycidylether of bisphenol-A (DGEBA) with unsaturated bisamic acids. Acrylation of Unsaturated poly(ester-amide)s (UPEAs) was carried out to afford acrylated UPEAs resin (i.e., AUPEAs). Interacting blends of Acrylated unsaturated poly(ester-amide)s (AUPEAs) with vinyl ester epoxy (VE) resin were prepared. APEAs and AUPEAs were characterized by elemental analysis, molecular weight determined by vapor pressure osmometer and by IR spectral study and by thermogravimetry. The curing of interacting blends was monitored on differential scanning calorimeter (DSC). Based on DSC data in situ glass reinforced composites of the resultant blends have been prepared and characterized for mechanical, electrical and chemical properties. Unreinforced blends were characterized thermo-gravimetrically (TGA).  相似文献   

12.
<正>Based on several unsymmetrical,twist,noncoplanar phthalazinone-containing monomers 2a-2e and an active bis(4-fluorophenyl)phenyl phosphine oxide(BFPPO) monomer,a series of novel poly(phthalazinone ether phosphine oxide)s (PPEPO) was synthesized by anhydrous K_2CO_3 mediated N—C coupling reaction in DMAc.The polymers exhibited good thermal properties with T_gs ranging from 267℃to 306℃and 5%weight loss temperatures in nitrogen higher than 430℃, together with high char yield upon prolonged heating at 800℃(35%—56%).Moreover,the polymers were readily soluble in common organic solvents,such as N-methyl-2-pyrrolidone,chloroform and m-cresol.These polymers had inherent viscosities in the range of 0.45-0.72 dL/g and could be cast into flexible and colorless films by spin coating or casting approach.  相似文献   

13.
A series of new AB-type poly(etherimide)s having bisphenol-type moiety was prepared by the one-pot polyimidization using triphenylphosphite(TPP) in N-methyl-2-pyrrolidone(NMP)/pyridine solution at 150°C. Complete cyclodehydration was observed in the polymerizations as well as in model reactions. Polymers were obtained with inherent viscosities in the 0.27–0.49 dL/g range. The Mn and Mw/Mn of poly[4-(1,4-phenyleneoxy-1,4-phenylenehexafluoro-isopropylidene-1,4-phenylene)oxyphthalimide] (4d) with ηinh = 0.49 dL/g were 73,400 g/mol and 1.5, respectively. Most polymers could readily be dissolved in common organic solvents such as DMAc, NMP, and m-cresol. The polymer 4d was soluble even in chloroform. These polymers had glass transition temperatures between 205 and 235°C, and 5% weight loss temperatures in the range of 511–532°C in nitrogen. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3530–3536, 1999  相似文献   

14.
New well-defined telechelic poly(phenyleneoxide)s (PPO's) were synthesized from 4-bromo-2,6-dimethylphenol and bi-phenolic compounds through phase transfer catalyzed aromatic nucleophilic substitution polymerization. Bisphenol-A (BPA), 4,4-biphenol (BP), hydroquinone (HQ) and 2,6-dihydroxynaphthalene (DHN) were employed as telechelic units. The composition analysis by proton-nuclear magnetic resonance (1H-NMR) spectroscopy revealed that DHN was highly reactive compared to BPA and HQ, whereas BP was un-reactive in the polymerization process. The number average repeating unit (n) in telechelic PPO was estimated as n=17-19 and n=17-20 for DHN and BPA (or HQ), respectively. The reactivity of the bi-phenolic in PPO synthesis are confirmed as DHN > HQ ∼ BPA ? BP. The molecular weight determination by gel permeation chromatography (GPC) and viscosity method suggest that the molecular weight of PPO decreased drastically with increasing amount of bi-phenolic units in the feed. The GPC chromatogram of PPO showed a bi-modal distribution, clearly indicative of formation of two different types of molecular weight chains, whereas the telechelic polymers have a mono-modal distribution with a narrow polydispersity. Thermal analysis by differential scanning calorimetry revealed that telechelic polymers are highly amorphous, like PPO, and no crystallization or melting peaks were observed in the heating/cooling cycles.  相似文献   

15.
Four new poly(arylene ether)s have been prepared by the reaction of N‐phenyl‐3,3‐bis(4‐hydroxyphenyl)phthalimidine (PA) with four different perfluoroalkylated monomers namely 1,3‐bis(4′‐fluoro‐3′‐trifluoromethyl benzyl) benzene, 4,4′‐bis(4′‐fluoro‐3′‐trifluoromethyl benzyl) biphenyl, 2,6‐bis(4′‐fluoro‐3′‐trifluoromethyl benzyl) pyridine, and 2,5‐bis(4′‐fluoro‐3′‐trifluoromethyl benzyl) thiophene. The poly(arylene ether)s were characterized by different spectroscopic, thermal, mechanical, and electrical techniques. The poly(arylene ether) containing quadriphenyl unit in the main chain showed very high glass transition temperature of 291°C and outstanding thermal stability upto 556°C for 10% weight loss under a 4:1 nitrogen:oxygen mixture. The polymers were soluble in a wide range of organic solvents. Transparent thin films of these polymers exhibited tensile strengths upto 75 MPa and elongation at break upto 32%. The films of these polymers showed low water absorption of 0.26%. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
17.
Soluble and heat-resistant s-triazine-containing poly(aryl ether)s have been prepared for their potent utilities as high-temperature membranes and composite matrix materials. They have been synthesized by the nucleophilic displacement polymerization of 2,4-bis(4-fluorophenyl)-6-phenyl-1,3,5-triazine (BFPT) with each of resorcinol (RS), 4,4′-dihydroxydiphenyl sulfone (DS), and bisphenol-like 4-(4-hydroxylphenyl)(2H)-phthalazin-1-one (HP). The presence of meta-ether linkages, sulfone groups or phthalazinone moieties in the polymer chain results in an improvement in the solubility of s-triazine-containing poly(aryl ether)s in common organic solvents (e.g., N,N′-dimethylacetamide, N-methyl-2-pyrrolidinone). The new polymers are amorphous and exhibit excellent thermal stability. The apparent activation energy values (Ea) as determined by using Kissinger method are respectively 268.1, 245.9 and 215.1 kJ/mol under N2 flow in dynamic heating conditions, for the first degradation stage of RS-PE, DS-PE and HP-PE, which are in well agreement with those values (272.6, 249.9 and 239.1 kJ/mol) determined by using Flynn-Wall-Ozawa method. The thermal stability classification among the polymers is made on the basis of the Ea values, and it follows the decreasing order: RS-PE > DS-PE > HP-PE. The properties of these polymers have been also compared with those of corresponding poly(aryl ether)s.  相似文献   

18.
Two poly(aryl ether)s containing naphthyl moieties were prepared from bis(3,5-dimethyl-4-hydroxyphenyl)naphthyl methane (monomer 1) via nucleophilic aromatic substitution polycondensation with bis(4-fluorophenyl) ketone and bis(4-fluorophenyl) sulfone.The structures of these polymers were confirmed by ~1H NMR.The M_n values of the two polymers were 96,200 and 88,600, respectively.The polymers exhibited good thermal stabilities with 5%mass loss at T>400℃and high glass-transition temperature(T_g) of T>250℃...  相似文献   

19.
A series of new poly(amide-hydrazide)s were obtained by the direct polycondensation of 5-amino 5′-carbohydrazido-2,2′-bipyridine with commercially available diacids by means of triphenyl phosphite and pyridine in the N-methyl-2-pyrrolidone (NMP) solutions containing dissolved LiCl. The resulting hydrazide containing polymers exhibited inherent viscosities in the 0.42-0.64 dL/g range. All copolymers were soluble in polar solvents such as NMP and dimethyl sulfoxide (DMSO). Most of the amorphous hydrazide copolymers formed flexible and tough films by solvent casting. The poly(amide-hydrazide)s had glass-transition temperatures (Tg) between 178 and 206 °C. All hydrazide copolymers could be thermally converted into the corresponding poly(amide-oxadiazole) approximately in the region of 300-400 °C, as evidenced by the DSC thermograms. The oxadiazole polymers and copolymers showed a dramatically decreased solubility and higher Tg when compared to their respective hydrazide prepolymers. They exhibited Tgs of 197-248 °C and were stable up to 450 °C in air or nitrogen.  相似文献   

20.
A series of new poly(o-hydroxy amide-imide)s with high molecular weights were synthesized by low-temperature solution polycondensation from a preformed imide ring and chloro- or dichloro-substituted p-phenylene-containing diacid chlorides of 2,5-bis(trimellitimido)chlorobenzene or 1,4-bis(trimellitimido)-2,5-dichlorobenzene and three bis(o-amino phenol)s. All the poly(o-hydroxy amide-imide)s were readily soluble in a variety of organic solvents such as N-methyl-2-pyrrolidone and N,N-dimethylacetamide. Transparent and flexible films of these polymers were cast from their solutions. The cast films had tensile strengths ranging from 88 to 102 MPa and elongations at break of 8–12%. Subsequent thermal cyclodehydration of the poly(o-hydroxy amide-imide)s afforded novel poly(benzoxazole-imide)s. The poly(benzoxazole-imide)s exhibited glass-transition temperatures in the range of 310–338 °C and were stable up to 500 °C in nitrogen, with 10% weight-loss temperatures recorded between 550 and 570 °C in nitrogen. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4151–4158, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号