首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The stability of silver nanoparticles is controlled mainly by two major factors, namely, aggregation and oxidation. In the present study, silver nanoparticles were synthesized by using different series of reducing agents like a strong reducing agent (sodium borohydride), a mild reducing agent (tri-sodium citrate), and a weak reducing agent (glucose) with different capping agents, namely, polyvinyl pyrrolidone (PVP K 30), starch, and sodium carboxyl methyl cellulose (NaCMC). The synthesized silver nanoparticles were characterized by UV-Visible absorption spectroscopy, dynamic light scattering (DLS), atomic force microscopy (AFM), and anti-microbial activity. The particle size of silver nanoparticles varies in the following order: sodium borohydride < tri-sodium citrate < glucose. Combination of sodium borohydride–polyvinyl pyrrolidone and tri-sodium citrate-polyvinyl pyrrolidone yields stable silver nanoparticles compared to other combinations of reducing agents and capping agents. The stability results confirmed that a refrigerated condition (8°C) was more suitable for storage of silver nanoparticles. Anti-microbial activity of silver nanoparticles synthesized in a sodium borohydride–polyvinyl pyrrolidone mixture shows a larger zone of inhibition compared to other silver nanoparticles. Anti-microbial results confirmed that the anti-microbial activity is better with smaller particle size. The size and stability of silver nanoparticles in the presence of different combinations of stabilizing and capping agents are reported.  相似文献   

3.
A simple, rapid, sensitive and field-portable colorimetric technique for the determination of Cr(III) in aqueous solution based on an aggregation-induced color transition of gold nanoparticles (AuNPs) has been developed. AuNPs were first functionalized with a dithiocarbamate-modified N-benzyl-4-(pyridin-4-ylmethyl)aniline ligand (BP-DTC). Chelation of Cr(III) by several of these ligands, bound to different nanoparticles, led to nanoparticle aggregation in solution. This gave rise to a color change from wine-red to blue that was discernible by the naked eye and an easily measurable alteration in the extinction spectrum of the particles. The method could be used to determine Cr(III) with a detection limit of 31 ppb. Furthermore, selective detection of trace Cr(III) in aqueous solution in the presence of 12 other transition metal ions has been achieved. Toward the goal of practical applications, the sensor has been further evaluated with a view to monitoring Cr(III) in nutritional supplements and the blood of diabetes patients and also applied in the indirect determination of Cr(VI) in waste water.  相似文献   

4.
In this study, gold nanoparticles (AuNPs) prepared in a 5 mM CsCl aqueous solution using the solution-plasma method are characterized via transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy with synchrotron radiation (SR-XPS). The particle diameter is measured over the process time via TEM. During the solution-plasma process, small particles of 2.1 to 2.2-nm diameter are generated in the CsCl aqueous solution; these particles then enlarge via Ostwald ripening over time until they reach an equilibrium size of ~13 nm after 36 days. In addition, the surface chemical states of the AuNPs are characterized at different depths via SR-XPS. The SR-XPS measurements obtained using incident X-ray energy () of 945.0 eV revealed that Cs─Au, Cl─Au, and Cs─Cl─Au bonds are present 1.2 nm below the surface. The measurements obtained at an incident X-ray energy of 2515.0 eV showed that Cs─Cl─Au bonding is also present 2.5 nm below the surface, indicating that Cs and Cl strongly interact with Au. The TEM and SR-XPS measurements revealed that 2 processes occur cyclically during the growth process via Ostwald ripening: (i) the Cs and Cl in the aqueous solution adsorb on the AuNP surface and (ii) Au atoms subsequently bond to the AuNPs surface.  相似文献   

5.
Niaz A  Sirajuddin  Shah A  Bhanger MI  Saeed M  Jamali MK  Arain MB 《Talanta》2008,74(5):1608-1614
A new simple sensitive differential pulse polarographic (DPP) method was investigated for the determination of acrylamide (AA) directly in a neutral aqueous solution. The AA showed a well-defined and well-resolved peak in pure aqueous LiCl at −1.84 V in the potential range from −1.6 V to −1.97 V at nitrogen pressure of 0.5 kg cm−2. Among the various electrolytes studied, the AA showed good DPP response in the presence of LiCl and tetra methyl ammonium iodide, while it showed poor response in the presence of tetra butyl ammonium hydroxide and tetra butyl ammonium bromide due to their strong adsorption on the surface of electrode which hindered its reduction. The effect of LiCl concentration, the cyclic voltammetric response and the drop time study showed that AA exhibited an irreversible adsorptive electrochemical behavior. The good electrochemical response in pure aqueous medium suggested that hydrogen bonding might be involved which may favor the electrode reaction. Under optimized conditions, the peak current was linear in the entire concentration range from 0.2 mg L−1 to 20 mg L−1 with the correlation coefficient of R2 = 0.9998. The method showed good reproducible results with R.S.D. of 0.3% (n = 16). The detection limit (LOD) was 27 μg L−1. The influence of various interfering agents was also studied. The method was applied successfully for the quantification of AA in water samples without any interference effect from alkali metals.  相似文献   

6.
This paper describes the feasibility of employing capillary electrophoresis (CE) to separate silver particles in nanometer regimes. We have found that the addition of an anionic surfactant, sodium dodecyl sulphate (SDS), to the running electrolyte prevents coalescence of the silver particles during the process, which improves the separation performance; the concentration of SDS required for optimal silver nanoparticle separation is ca. 20 mM. By monitoring the electropherograms using a diode-array detection (DAD) system, we have also investigated the separation of suspended silver nanorods with respect to their shapes. Our results demonstrate that the combination of CE and DAD is a powerful one for the separation and characterization of various silver nanoparticles.  相似文献   

7.
8.
The possibility of using a corona treatment (electrical discharge at atmospheric pressure) for fiber surface activation, which can facilitate the loading of silver nanoparticles (NPs) from colloids onto the polyester (PES) and polyamide (PA) fabrics and thus improve their antibacterial properties, was studied. Bactericidal efficiency and its laundering durability on silver‐loaded fabrics for Gram‐positive bacterium Staphylococcus aureus and Gram‐negative bacterium Escherichia coli were evaluated. The fiber morphology after corona treatment and subsequent loading of silver NPs was followed by SEM. Corona‐treated fabrics loaded with silver NPs exhibited better antibacterial properties in comparison with untreated fabrics. In order to obtain acceptable laundering durability, it is necessary to use highly concentrated silver colloids. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
10.
The multiple sizing of silver nanoparticles (AgNPs) were synthesized from the miscible compound of ethylene glycol (EG), polyvinylpyrrolidone (PVP) and silver nitrate (AgNO3) via the solvothermal method. During the synthesis, the PVP-AgNO3 was contemplated as a paramount parameter. Using the simple method of solvothermal, the sizing of AgNPs was easily controlled in accord with the augmentation of PVP-AgNO3 at secured and moderate temperature. In regards to the sizing of AgNPs, the presence of minimum agglomeration, the absorption capability and chemical structures were highlighted through a series of verification includes ultraviolet–visible (UV–Vis) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM) analysis. The effectiveness of the synthesized AgNPs was further investigated and compared with the commercial AgNPs by incorporating the AgNPs into titanium dioxide (TiO2) semiconductor film-based dye-sensitized solar cells (DSSCs). Results signified that the spherical AgNPs with produced sizing within the range of 19.6 to 45.2 nm were greatly impacting by tunable quantities of PVP-AgNO3, which was validated in the forms of linear equations. A larger size promotes a slower nucleation rate that conduces agglomeration. In opposition to this, the smallest size of AgNPs develops a faster formation rate of Ag ions into AgNPs, inducing the deterrent of agglomeration in light of notable particle dispersion. The power conversion efficiency (PCE) contributed by the incorporation of synthesized AgNPs into TiO2 is also 41.2% higher than that of the commercial AgNPs-TiO2. This is because the synthesized AgNPs provides less agglomeration which led to a better surface plasmonic effect towards the nanoparticles.  相似文献   

11.
Ligno-cellulosic fibers have a great market and propose higher value addition and options to develop various products but they do not have inherent antimicrobial properties. In this study, a simple hydrothermal method was applied to build up antimicrobial properties to natural fibers by in situ-generating silver nanoparticles (AgNPs) in them. Herein, the ligno-cellulosic Thespesia lampas natural fibers were selected to develop antimicrobial activity using silver nitrate (AgNO3) solution by hydrothermal method. The modified fibers were characterized by SEM, FTIR, XRD, TGA, and antibacterial activity tests. The modified fibers had spherical AgNPs with an average size of 95?nm. The thermal stability of the modified fibers was higher than that of the unmodified fibers. The modified fibers exhibited good antibacterial activity against both the Gram negative and Gram positive bacteria. These modified fibers can be considered as fillers in polymer matrices to make antibacterial composites.  相似文献   

12.
Oligomerization efficiency of amino acids in aqueous solution has been compared under different conditions (temperature, activating agent, etc.) using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and 1,1-carbonyldiimidazole (CDI) as coupling agents. Glycine (H2N-CH2-COOH) and α-alanine (H2N-CH(CH3)-COOH) were chosen as α-amino acids and β-alanine (H2N-CH2-CH2-COOH) as the β-amino acid. The coupling reaction between EDC and glycine was shown to occur but does not go to completion either at ambient temperature or at 70 °C. The presence of a carboxylic activating agent such as N-hydroxysuccinimide improves the EDC-mediated coupling reaction, and the amino acid structure (α- or β-) was shown to have an influence on the oligomerization efficiency, with β-alanine polymerisation being more efficient. These findings are explained by reference to the reaction mechanism.  相似文献   

13.
The purpose of this experiment was the green synthesis of silver nanoparticles from aqueous extracts of Ziziphora clinopodioides Lam (AgNPs@Ziziphora) and assessment of their cytotoxicity, antioxidant, antibacterial, antifungal, and cutaneous wound-healing effects. These nanoparticles were characterized using ultraviolet–visible spectroscopy (UV–Vis), X-ray diffraction (XRD), field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy (FESEM-EDX), atomic force microscopy (AFM), and transmission electron microscopy (TEM). UV–Vis, TEM, and FESEM analyses indicated that the size of Ag nanoparticles (AgNPs) depended on Z. clinopodioides and AgNO3 concentrations. In vitro biological experiments indicated that AgNPs@Ziziphora has excellent antioxidant potential against DPPH, antifungal effects against Candida guilliermondii, Candida krusei, Candida glabrata, and Candida albicans, and antibacterial activities against Staphylococcus aureus, Bacillus subtilis, Streptococcus pneumonia, Salmonella typhimurium, Pseudomonas aeruginosa, and Escherichia coli O157:H7. Also, these nanoparticles did not exhibit cytotoxicity property against human umbilical vein endothelial cells (HUVECs). An in vivo biological test revealed that AgNPs@Ziziphora ointment significantly (p ≤ 0.01) increased the levels of wound contracture, blood vessels, hydroxyl proline, hexuronic acid, hexosamine, fibrocytes, fibroblasts, and fibrocyte/fibroblast ratio and significantly (p ≤ 0.01) decreased the wound area, and levels of total cells, neutrophils, and lymphocytes than other groups in rats. The results of UV–Vis, XRD, FESEM-EDX, AFM, and TEM confirmed that the aqueous extract of Z. clinopodioides can be used to produce silver nanoparticles with significant antioxidant, antimicrobial, and cutaneous wound-healing properties without any cytotoxicity.  相似文献   

14.
15.
In this study, hybrid nanocomposites were synthesized by photo-crosslinking of poly (ethylene glycol) methyl ether acrylate/poly (ethylene glycol) diacrylate monomer system using 2- (carboxymethoxy) thioxanthone and POSS-(PEG2000)8. Additionally, AgNO3 was added to this formulation and in situ formation of silver nanoparticles onto hybrid nanocomposites were achieved in one-step. UV–Vis spectroscopy technique was used as a very useful tool for surface plasmon resonance band detection of silver nanoparticles. In addition to thermogravimetric analyses which were performed in nitrogen atmosphere to determine the thermal stability of the nanocomposites, dynamic light scattering, and scanning electron microscopy techniques were also used for size and morphology of silver nanoparticles in a hybrid network. TGA analyses proved that even the addition of a very low amount of POSS-(PEG2000)8 made noteworthy contribution to thermal stability especially in the presence of silver nanoparticles in the hybrid network. The swelling capacities of the prepared films were examined at 1, 3 and 24 h in phosphate buffer solution (pH = 7.4). It was found that film containing only POSS-(PEG2000)8 had the highest swelling ratio in the shortest time.  相似文献   

16.
Unsatisfactory sensitivity and stability for molecules with low polarizability is still a problem limiting the practical applications of surface-enhanced Raman scattering (SERS) technique. By preparing immobilized silver nanoparticles (Fe3O4/Ag) through depositing silver on the surface of magnetite particles, a highly sensitive and selective SERS method for the detection of trace glutathione (GSH) was proposed on the basis of a system of Fe3O4/Ag nanoparticles and crystal violet (CV), in which the target GSH competed with the CV probe for the adsorption on the Fe3O4/Ag nanoparticles. Raman insensitive GSH replaced the highly Raman sensitive CV adsorbed on the surface of Fe3O4/Ag particles. This replacement led to a strong decrease of the CV SERS signal, which was used to determine the concentration of GSH. Under optimal conditions, a linear response was established between the intensity decrease of the CV SERS signal and the GSH concentration in the range of 50–700 nmol L−1 with a detection limit of 40 nmol L−1. The use of a Fe3O4/Ag substrate provided not only a great SERS enhancement but also a good stability, which guarantees the reproducibility of the proposed method. Its use for the determination of GSH in practical blood samples and cell extract yielded satisfactory results.  相似文献   

17.
A new technique of non-violent and fast dissolution of sodium metal in a concentrated aqueous solution of Epsom salt (MgSO4.7H2O) at room temperature (RT) has been developed. The dissolution process is mildly exothermic but could be carried out even in a glass beaker in air under swift stirring condition. The reaction products consist of mixed salts of MgSO4 and Na2SO4 as well as Mg(OH)2 which are only mildly alkaline and hence are non-corrosive and non-hazardous unlike NaOH. A 50 mL solution having Epsom salt concentration of 2 M was found to give the optimal composition for disposal of 1 g of sodium. Supersaturated (>2.7 M), as well as dilute (<1.1 M) solutions, however, cause violent reactions and hence should be avoided. Repeated sodium dissolution in Epsom solution produced a solid waste of 4.7 g per g of sodium dissolved which is comparable with the waste (4 g) produced in 8 M NaOH solution. A 1.4 M Epsom solution sprayed with a high-pressure jet cleaner at RT in air easily removed the sodium blocked inside a metal pipe made of mild steel. The above jet also dissolved peacefully residual sodium collected on the metal tray after a sodium fire experiment. No sodium fire or explosion was observed during this campaign. The Epsom solution spray effectively neutralized the minor quantity of sodium aerosol produced during this campaign. This novel technique would hence be quite useful for draining sodium from fast breeder reactor components and bulk processing of sodium as well as for sodium fire fighting.  相似文献   

18.
The demand for nanoparticles is increasing day by day due to their wide range of applications in various areas including pharmaceutical industry. Nanoparticles are formally synthesized by chemical methods in which the toxic and flammable chemicals are used. Synthesis of nanoparticles from various biological systems has been reported, but among all, biosynthesis of nanoparticles from plants is considered as the most suitable method. The current study confirms the potential of aqueous extract of Melissa officinalis grown under in vitro condition for the green synthesis of silver nanoparticles (AgNPs). Also, we revealed the cytotoxicity, antioxidant, and anti-acute myeloid leukemia effects of AgNPs compared to mitoxantrone in a leukemic mouse model. The synthesized AgNPs were characterized using several techniques including UV–Vis., FT-IR, TEM, FE-SEM, and EDS. In vivo experiment, induction of acute myeloid leukemia was done by DMBA in 75 mice. The obtained results were fed into SPSS-22 software and analyzed by one-way ANOVA. By quantitative real-time PCR, S1PR1 and S1PR5 mRNA expression in lymphocytes were significantly (p ≤ 0.01) increased by treating the leukemic mice with the AgNPs and mitoxantrone. Also, AgNPs similar to mitoxantrone, significantly (p ≤ 0.01) enhanced the platelet, lymphocyte, and RBC parameters and the anti-inflammatory cytokines (IL4, IL5, IL10, IL13, and IFNα) and reduced the total WBC, blast, monocyte, neutrophil, eosinophil, and basophil counts and the pro-inflammatory cytokines (IL1, IL6, IL12, IL18, IFNY, and TNFα) as compared to the untreated mice. In vitro experiment, AgNPs similar to mitoxantrone had low cell viability dose-dependently against murine C1498, human HL-60/vcr, and 32D-FLT3-ITD cell lines without any cytotoxicity on HUVEC cell line. Furthermore, the DPPH assay showed similar antioxidant potentials for AgNPs and mitoxantrone. Above results approve the excellent anti-acute myeloid leukemia, cytotoxicity, and antioxidant properties of AgNPs compared to mitoxantrone.  相似文献   

19.
The morphology and structure of the regenerated cellulose membranes prepared from its NaOH–urea aqueous solution by coagulating with 5 wt% H2SO4–10 wt% Na2SO4 aqueous solution with different temperatures and times were investigated. The pore size, water permeability and physical properties of the membranes were measured with scanning electron micrograph (SEM), wide X-ray diffraction (WXRD), Fourier transfer infrared spectroscopy (FTIR), flow rate method, and tensile testing. The SEM observation revealed that the structure and pore size of the membranes changed drastically as a function of the coagulation temperature. The membranes coagulated at lower temperatures tended to form the relatively small pore size than those at higher temperatures. On the contrary, the membranes coagulated at different times exhibited similar pore size. Interestingly, the mean pore size and water permeability of the membranes increased from 110 nm with standard deviation (SD) of 25 nm and 12 ml h−1 m−2 mmHg−1 respectively to 1,230 nm with SD of 180 nm and 43 ml h−1 m−2 mmHg−1 with an increase in coagulation temperature from 10 to 60°C. However, the membranes regenerated below 20°C exhibited the dense structure as well as good tensile strength and elongation at break. The result from FTIR and ultraviolet-visible (UV-vis) spectroscopy indicated that the relatively strong intermolecular hydrogen bonds exist in the cellulose membranes prepared at lower coagulation temperatures. This work provided a promising way to prepare cellulose materials with different pore sizes and physical properties by controlling the coagulation temperature.  相似文献   

20.
A novel quinoline-functionalized Schiff-base derivative PY was designed and synthesized. Sensor PY displayed highly selective and sensitive fluorescence enhancement and naked-eye color change to Fe3+ in the presence of other competing cations. The mechanisms have been supported by Job’s plot evaluation, FT-MS and theoretical calculations. The in situ generated PY-Fe3+ complex solution exhibited a high selectivity toward PPi via Fe3+ displacement approach. The detection limits of sensor PY to Fe3+ and PY-Fe3+ complex to PPi were estimated to be 4.24 × 10?8 M and 8.18 × 10?8 M, respectively. This successive recognition feature of sensor PY makes it has a potential utility for Fe3+ and PPi detection in aqueous solution. A B3LYP/6-31G(d,p) basis set was employed for optimization of PY and PY-Fe3+ complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号