首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Keith J  Puckett S  Pacey GE 《Talanta》2003,61(4):417-421
A new class of fiber optic sensor, long period gratings (LPG) optical sensors, has been investigated. The characteristics of the bare fiber LPG were studied. The LPG response to different refractive index standards, mixtures of methanol and ethanol were observed. The temperature dependence of LPG sensors was determined. A commercial LPG sensor for copper determination was evaluated.  相似文献   

2.
In the present work, studies have been made to analyze the sensitivity, response, recovery time and sensing mechanism of Pd-doped thick film SnO2 sensor for detection of LPG. To achieve this, thick film Pd-doped (0.25 and 1% by weight in available Indium doped SnO2 thick film paste supplied by ESL, USA) along with an undoped (Indium doped) SnO2 sensors were fabricated on a 1″ × 1″ alumina substrate. It consists of a gas sensitive layer (doped SnO2), a pair of electrodes underneath the gas sensing layer serving as a contact pad for sensor. Also, a heater element on the backside of the substrate was printed for generating appropriate operating temperature at the substrate necessary for acquiring gas sensing properties. The sensor doped with 1% palladium showed the maximum sensitivity of 72% at 350 °C for 0.5% concentration of LPG. Possible detailed sensing mechanism of Pd-doped SnO2 sensor for LPG detection has been proposed.  相似文献   

3.
长周期光纤光栅对铜离子的检测研究   总被引:2,自引:0,他引:2  
利用有机反应在长周期光纤光栅表面制备了一层高分子材料敏感膜,用扫描电子显微镜(SEM)、X射线型能谱仪(EDX)等检测手段对高分子敏感膜层进行了分析表征,并利用敏感膜时溶液中的铜离子进行了光学检测。结果表明,该高分子敏感膜能够较好地确定铜离子的存在,证明了利用长周期光纤光栅对铜离子进行检测是可行的。  相似文献   

4.
A single element catalytic sensor based on SnO2:Pt catalyst has been made to detect liquefield petroleum gas (LPG) at ppm level. In this paper, catalytic sensor preparation, characterization and testing with LPG concentrations are reported.  相似文献   

5.
Raju AR  Seshadri K  Rao CN 《Talanta》1992,39(11):1543-1547
Sensor characteristics of V(2)O(5) dispersed on oxide supports such as Al(2)O(3), TiO(2) and ZrO(2) with respect to various gases and vapours including liquefied petroleum gas (LPG) have been investigated. Of all the systems studied, 20 mol% V(2)O(5) dispersed on ZrO(2) shows the highest sensitivity for LPG, the log sensitivity-log concentration (in ppm) plots being linear up to 1000 ppm or more. The sensitivity is not affected by humidity or recycling. Addition of P(2)O(5) to V(2)O(5) however destroys the sensitivity. Considering all aspects, 20 mol% V(2)O(5)/ZrO(2) is suggested for use as a practical LPG sensor. ESR spectroscopy indicates the formation of V(4+) species on exposure of V(2)O(5)/ZrO(2) or TiO(2) to LPG. In-situ high-temperature x-ray diffraction measurements show the formation of an unusual monoclinic form of VO(2) on exposure to LPG at 625 K which gets oxidized back to V(2)O(5) on exposure to air.  相似文献   

6.
Sr-doped SnO2 thick film gas sensors were prepared for domestic liquefied petroleum gas (LPG) determination down to several ppm levels using the screen-printing technique. Characterization of Sr-doped SnO2 thick film was investigated by XRD, XPS and DTA-TGA analyses. The sensitivity, selectivity, sintering temperature, and static and dynamic measurement were investigated. The results showed that the Sr-doped SnO2 thick film sensor is suitable for several ppm levels LPG determination because of the high sensitivity (S = 12.7 to 10 ppm LPG). The dynamic measurements showed that the sensor exhibited high sensitivity and selectivity to domestic LPG at 210–300 °C.  相似文献   

7.
This paper reports the synthesis and liquid petroleum gas (LPG) sensing properties of nano-sized cadmium oxide (CdO). The nano-sized CdO powder was successfully synthesized by using a chemical co-precipitation method using cadmium acetate and the ammonium hydroxide, as starting materials and water as a carrier. The resulting nano-sized powder was characterized by X-ray diffraction (XRD) measurements and the transmission electron microscopy (TEM). The LPG sensing properties of the synthesized nano-sized CdO were investigated at different operating temperatures and LPG concentrations. It was found that the calcination temperature and the operating temperature significantly affect the sensitivity of the nano-sized CdO powder to the LPG. The sensitivity is found to be maximum when the calcination temperature was 400 °C. The sensitivity to 75 ppm of LPG is maximum at an operating temperature 450 °C and it was found to be ∼341%. The response and recovery times were found to be nearly 3-5 s and 8-10 s, respectively. The synthesized nano-sized CdO powder is able to detect up to 25 ppm for LPG with reasonable sensitivity at an operating temperature 450 °C and it can be reliably used to monitor the concentration of LPG over the range (25-75 ppm). The experimental results of the LPG sensing studies reveal that the nano-sized CdO powder synthesized by a simple co-precipitation method is a suitable material for the fabrication of the LPG sensor.  相似文献   

8.
Thick films of pure ZnO were obtained by screen-printing technique. Surface functionalized ZnO thick films by Cr2O3 were obtained by dipping pure ZnO thick films into 0.01 M aqueous solution of chromium trioxide (CrO3). The dipped films were fired at 500 °C for 30 min. Upon firing, the CrO3 would reduce to Cr2O3. Cr2O3-activated (0.47 mass%) ZnO thick films resulted in LPG sensor. Upon exposure to 100 ppm LPG, the barrier height between Cr2O3 and ZnO grains decreases markedly, leading to a drastic decrease in resistance. The sensor was found to sense LPG at 350 °C and no cross sensitivity was observed to other hazardous, polluting and inflammable gases. The quick response (∼18 s) and fast recovery (∼42 s) are the main features of this sensor. The effects of microstructures and dopant concentrations on the gas sensing performance of the sensor were studied and discussed.  相似文献   

9.
The thick-film semiconductor sensor for liquid petroleum gas (LPG) detection was fabricated using a mixed WO3-based sensor. We present the characterization of both their structural properties by means of XRD measurements and the electrical characteristics by using gas-sensing properties. The sensing characteristics such as sensitivity, working range, cross-sensitivity and response time were studied by using nanosized WO3-based mixed with different metal oxides (SnO2, TiO2 and In2O3) and doped with noble metals (Au, Pd and Pt). The WO3-based mixed with 5 wt.% In2O3 and 0.5 wt.% Pd showed the higher sensing characteristic at low concentration of LPG sensor at an operating temperature 225 °C.  相似文献   

10.
Keith J  Hess LC  Spendel WU  Cox JA  Pacey GE 《Talanta》2006,70(4):818-822
Sensors based on changes of refractive index in response to sorption of an analyte on the coating or film of a long period grating fiber (LPG) fiber have recently been reported. In most prior work the coating or film swelled during interaction with the analyte. The swelling mechanism produced a kinetic response that slowed both the sensor's time for steady-state measurement and the reversibility of the sensor. Here, the analytical utility of fabricating these nanometer thin films using the layer-by-layer (LBL) electrostatic assembly method is evaluated using CuII as the test analyte and Cibacron Blue as the reagent immobilized in the LBL assembly; a generation-4 poly(amidoamine) dendrimer served as the spacer in the assembly. Detection of 1.3 mg CuII L−1 was observed when six bilayers comprised the coating. The stable response was achieved with 0.6 mg L−1 in less than 1 min. When 0.1 M HCl was used as the rinsing solution, this LPG sensor was reversible and the signal to similar concentrations of CuII reproducible.  相似文献   

11.
Nanocrystalline BiFe0.6Mn0.4O3 powders were synthesized by sol–gel citrate method and studied for gas sensing behavior to reducing gases such as LPG, CO, CH4 and NH3. The composition and the structure of the powders have been investigated by means of XRD and TEM. The result shows that the BiFe0.6Mn0.4O3 powders have a rhombohedral distorted perovskite structure with an average crystallite size of 35–40 nm. The BiFe0.6Mn0.4O3-based LPG sensor shows better sensitivity at an operating temperature of 250 °C. The dispersion of Pd on BiFe0.6Mn0.4O3 in the ratio of 0.8 wt.% improved the sensitivity, selectivity and response time. In addition, it reduced the operating temperature from 250 to 210 °C for LPG sensor. The response time for LPG was less than 1 min.  相似文献   

12.
用a-Fe_2O_3研制成的加热式气敏元件功耗大(约1.5W)。常温SnO_2-a-Fe_2O_3气敏元件功耗低(约0.1W),灵敏度高,响应恢复快,稳定,具有一定选择性。 气敏元件制备方法:按62.5%,6.2%和31.3%称取SnO_2,a-Fe_2O_3和硅胶,加水研磨2小时,使其呈浆糊状,点入模具内,放入一对φ0.05mm铂丝电极,晾干,脱模,在860~890℃空气中烧结95分钟。  相似文献   

13.
A nanocomposite consisting of a few layers of graphene (FLG) and tin dioxide (SnO2) was prepared by ultrasound-assisted synthesis. The uniform SnO2 nanoparticles (NPs) on the FLG were characterized by X-ray diffraction in terms of lattice and phase structure. The functional groups present in the composite were analyzed by FTIR. Electron microscopy (HR-TEM and FE-SEM) was used to study the morphology. The effect of the fraction of FLG present in the nanocomposite was investigated. Sensitivity, selectivity and reproducibility towards resistive sensing of liquid propane gas (LPG) was characterized by the I-V method. The sensor with 1% of FLG on SnO2 operated at a typical voltage of 1 V performs best in giving a rapid and sensitive response even at 27 °C. This proves that the operating temperature of such sensors can be drastically decreased which is in contrast to conventional metal oxide LPG sensors.
Graphical abstract Schematic of a room temperature gas sensor for liquefied petroleum gas (LPG). It is based on the use of a few-layered graphene (1 wt%)/SnO2 nanocomposite that was deposited on an interdigitated electrode (IDEs). A sensing mechanism for LPG detection has been established.
  相似文献   

14.
Nanocrystalline In(2)O(3)-based solid solutions, with different concentration of Co, with cubic structure were successfully prepared by a simple route. The as-prepared materials were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The indirect heating structure sensors based on pure and doped In(2)O(3) as sensitive materials were fabricated on an alumna tube with Au electrodes and gas-sensing properties of the sensor elements were measured as a function of concentration of dopant, operating temperature and concentrations of the test gases. The results showed that In(2)O(3) had high response towards H(2)S gas at an operating temperature 150 degrees C, while 2.5 wt.% Co-doped In(2)O(3) sensor exhibited enhance response and selectivity to H(2)S at rather lower operating temperature. Incorporation of platinum further improved the response, selectivity and response time towards H(2)S. Platinum incorporated 2.5 wt.% Co-doped In(2)O(3) (Pt: 0.5 wt.%) was able to detect 10-100 ppm of H(2)S in air at an operating temperature of 100 degrees C. The selectivity of the sensor elements for H(2)S against liquefied petroleum gas (LPG), NH(3) and H(2) gases was studied. The improved gas-sensing properties can mainly be attributed to the selectivity to oxidation of H(2)S and noble metal additive sensitization.  相似文献   

15.
In this study, we observed that lysophosphatidylglycerol (LPG) completely inhibited a formyl peptide receptor like-1 (FPRL1) agonist (MMK-1)-stimulated chemotactic migration in human phagocytes, such as neutrophils and monocytes. LPG also dramatically inhibited IL-1β production by another FPRL1 agonist serum amyloid A (SAA) in human phagocytes. However, LPG itself induced intracellular calcium increase and superoxide anion production in human phagocytes. Keeping in mind that phagocytes migration and IL-1β production by FPRL1 are important for the induction of inflammatory response, our data suggest that LPG can be regarded as a useful material for the modulation of inflammatory response induced by FPRL1 activation.  相似文献   

16.
合成气一步法制备液化石油气(LPG)可在甲醇合成催化剂和分子筛组成的复合催化剂上实现.本实验选用与Y分子筛孔径相近的SAPO-5分子筛(0.73 nm × 0.73 nm)作为研究对象,在335 ℃、3.0 MPa、空速1 500 h-1、Cu-Zn-Al/Pd-SAPO-5质量比为1/2的条件下获得了73.9%的CO转化率和73.0%的LPG选择性,该结果进一步证实了较大孔径的分子筛有利于LPG的合成.此外,研究结果还表明,合成气一步法制备LPG过程中甲醇/二甲醚向烃类的转化遵循烃池机理.  相似文献   

17.
毛细管气相色谱法对液化石油气组分的测定   总被引:1,自引:0,他引:1  
选用30 m×0.53 mm(i.d.) HP PLOT/Al2O3石英毛细管柱,程序升温和分流进样技术对液化石油气的18种C_1 ~C_5烃类组分进行分离.选择水浴加阀箱气化方式,并以80 ℃为气化温度优化了进样口温度等色谱参数.液化石油气各组分在一定浓度范围内其浓度与响应值有良好的线性关系,相关系数r为0.994 0 ~0.998 8.各组分实际样品的检出限为0.001% ~0.002%(摩尔分数).  相似文献   

18.
It is useful for practical operation to study the rules of production of propylene by the catalytic conversion of heavy oil in FCC (fluid catalytic cracking). The effects of temperature and C/O ratio (catalyst to oil weight ratio) on the distribution of the product and the yield of propylene were investigated on a micro reactor unit with two model catalysts, namely ZSM-5/Al2O3 and USY/Al2O3, and Fushun vacuum gas oil (VGO) was used as the feedstock. The conversion of heavy oil over ZSM-5 catalyst can be comparable to that of USY catalyst at high temperature and high C/O ratio. The rate of conversion of heavy oil using the ZSM-5 equilibrium catalyst is lower compared with the USY equilibrium catalyst under the general FCC conditions and this can be attributed to the poor steam ability of the ZSM-5 equilibrium catalyst. The difference in pore topologies of USY and ZSM-5 is the reason why the principal products for the above two catalysts is different, namely gasoline and liquid petroleum gas (LPG), repspectively. So the LPG selectivity, especially the propylene selectivity, may decline if USY is added into the FCC catalyst for maximizing the production of propylene. Increasing the C/O ratio is the most economical method for the increase of LPG yield than the increase of the temperature of the two model catalysts, because the loss of light oil is less in the former case. There is an inverse correlation between HTC (hydrogen transfer coefficient) and the yield of propylene, and restricting the hydrogen transfer reaction is the more important measure in increasing the yield of propylene of the ZSM-5 catalyst. The ethylene yield of ZSM-5/Al2O3 is higher, but the gaseous side products with low value are not enhanced when ZSM-5 catalyst is used. Moreover, for LPG and the end products, dry gas and coke, their ranges of reaction conditions to which their yields are dependent are different, and that of end products is more severe than that of LPG. So it is clear that maximizing LPG and propylene and restricting dry gas and coke can be both achieved via increasing the severity of reaction conditions among the range of reaction conditions which LPG yield is sensitive to.  相似文献   

19.
采用共沉淀-浸渍法制备了不同Ni 含量的 Ni/Mg(Al)O 催化剂并用于液化石油气(LPG)的低温水蒸气重整反应. X 射线衍射和程序升温还原结果表明, 在 800 ℃焙烧的 Ni/Mg(Al)O 催化剂中, NiO 与 MgO 反应生成 Mg-Ni-O 固溶体, 还原后形成金属 Ni 纳米颗粒. 详细研究了 Ni 含量(质量分数)、反应温度和水/碳摩尔比(nH2O/nC) 等对催化剂性能的影响. 实验结果表明, 15%Ni/Mg(Al)O 催化剂对 LPG 低温重整反应具有最佳的催化性能. 提高反应温度能显著提高 Ni/Mg(Al)O 催化剂的催化性能. 当nH2O/nC=2时, 在400~500 ℃的温度范围使LPG完全转化的最大反应空速从 28900 mL·h-1·g-1Cat提高到 86800 mL·h-1·g-1Cat. 适当增大水/碳摩尔比有利于 LPG 转化为小分子气体, 但在 LPG 摩尔流量不变的情况下, 反应气中水含量过高会导致 LPG 转化率降低. 反应后催化剂的X射线衍射谱(XRD)和热重分析(TG)结果表明, Ni/Mg(Al)O催化剂优良的催化活性和反应稳定性可归因于催化剂表面Ni晶粒较高的稳定性和抗积炭性能.  相似文献   

20.
采用共沉淀-浸渍法并在较低温度(400~700℃)下焙烧制备了镁铝混合氧化物(MgmAl)负载的Ni催化剂.X射线衍射和程序升温还原结果表明,Ni物种高度分散于催化剂表面,没有形成尖晶石NiAl2O4.在650℃可被还原成金属Ni纳米晶粒,在400℃和较低水/碳摩尔比(S/C=2)条件下表现出较好的催化液化石油气(LP...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号