首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As part of the Shallow Water Acoustics in a Random Medium (SWARM) experiment, a 16 element WHOI vertical line array (WVLA) was moored in 70 m of water off the New Jersey coast. A 400-Hz acoustic tomography source was moored some 32-km shoreward of this array, such that an acoustic path was created that was anti-parallel to the primary propagation direction for shelf-generated internal wave solitons. The presence of these soliton internal waves in the acoustic waveguide causes significant coupling of energy between propagating acoustic modes, creating fluctuations in modal intensities and modal peak arrival times, as well as time spreading of the pulses. Two methods by which acoustic propagation and scattering in soliton-filled waveguides can be modeled are presented here in order to understand and explain the scattering observed in the SWARM field data. The first method utilizes the Preisig and Duda [IEEE J. Ocean. Eng. 22, 256-269 (1997)] Sudden Interface Approximation (SIA) to represent the solitons. The second method, which is computationally slower, uses a finely meshed, "propagated" thermistor record to simulate the solitons in the SWARM experiment waveguide. Both numerical methods are found to generate scattering characteristics that are similar to the SWARM field data.  相似文献   

2.
To investigate acoustic effects of nonlinear internal waves, the two southwest tracks of the SWARM 95 experiment are considered. An airgun source produced broadband acoustic signals while a packet of large nonlinear internal waves passed between the source and two vertical linear arrays. The broadband data and its frequency range (10-180 Hz) distinguish this study from previous work. Models are developed for the internal wave environment, the geoacoustic parameters, and the airgun source signature. Parabolic equation simulations demonstrate that observed variations in intensity and wavelet time-frequency plots can be attributed to nonlinear internal waves. Empirical tests are provided of the internal wave-acoustic resonance condition that is the apparent theoretical mechanism responsible for the variations. Peaks of the effective internal wave spectrum are shown to coincide with differences in dominant acoustic wavenumbers comprising the airgun signal. The robustness of these relationships is investigated by simulations for a variety of geoacoustic and nonlinear internal wave model parameters.  相似文献   

3.
Acoustic propagation can be described by rays and normal modes. Applying the path integral to refractive rays in three dimensional space, Dashen et al. [J. Acoust. Soc. Am. 77, 1716-1722 (1985)] derived the mutual coherence function of the acoustic field. For shallow water where sound interacts with boundaries, the acoustic field can be described by vertical modes and horizontal rays. Applying the path integral to the horizontal rays, one obtains the mutual coherence function of the normal modes. This paper applies this formulation to the derivation of the temporal coherence function of individual modes and also that of the acoustic field in the presence of linear internal waves. The effects of mode coupling due to internal waves on temporal coherence loss are illustrated with numerical calculations.  相似文献   

4.
The effect of parametric wave phase conjugation (WPC) in application to ultrasound or acoustic waves in magnetostrictive solids has been addressed numerically by Ben Khelil et al. [J. Acoust. Soc. Am. 109, 75-83 (2001)] using 1-D unsteady formulation. Here the numerical method presented by Voinovich et al. [Shock waves 13(3), 221-230 (2003)] extends the analysis to the 2-D effects. The employed model describes universally elastic solids and liquids. A source term similar to Ben Khelil et al.'s accounts for the coupling between deformation and magnetostriction due to external periodic magnetic field. The compatibility between the isotropic constitutive law of the medium and the model of magnetostriction has been considered. Supplementary to the 1-D simulations, the present model involves longitudinal/transversal mode conversion at the sample boundaries and separate magnetic field coupling with dilatation and shear stress. The influence of those factors in a 2-D geometry on the potential output of a magneto-elastic wave phase conjugator is analyzed in this paper. The process under study includes propagation of a wave burst of a given frequency from a point source in a liquid into the active solid, amplification of the waves due to parametric resonance, and formation of time-reversed waves, their radiation into liquid, and focusing. The considered subject is particularly important for ultrasonic applications in acoustic imaging, nondestructive testing, or medical diagnostics and therapy.  相似文献   

5.
Broadband matched-field processing: coherent and incoherent approaches   总被引:1,自引:0,他引:1  
Matched-field based methods always involve the comparison of the output of a physical model and the actual data. The method of comparison and the nature of the data varies according to the problem at hand, but the result becomes always largely conditioned by the accurateness of the physical model and the amount of data available. The usage of broadband methods has become a widely used approach to increase the amount of data and to stabilize the estimation process. Due to the difficulties to accurately predict the phase of the acoustic field the problem whether the information should be coherently or incoherently combined across frequency has been an open debate in the last years. This paper provides a data consistent model for the observed signal, formed by a deterministic channel structure multiplied by a perturbation random factor plus noise. The cross-frequency channel structure and the decorrelation of the perturbation random factor are shown to be the main causes of processor performance degradation. Different Bartlett processors, such as the incoherent processor [Baggeroer et al., J. Acoust. Soc. Am. 80, 571-587 (1988)], the coherent normalized processor [Z.-H. Michalopoulou, IEEE J. Ocean Eng. 21, 384-392 (1996)] and the matched-phase processor [Orris et al., J. Acoust. Soc. Am. 107, 2563-2375 (2000)], are reviewed and compared to the proposed cross-frequency incoherent processor. It is analytically shown that the proposed processor has the same performance as the matched-phase processor at the maximum of the ambiguity surface, without the need for estimating the phase terms and thus having an extremely low computational cost.  相似文献   

6.
This paper examines the signal coherence loss due to internal waves in deep water in terms of the signal coherence time and compare to data reported in the literature over the past 35 years. The coherence time of the early raylike arrivals was previously modeled by Munk and Zachariasen ["Sound propagation through a fluctuating stratified ocean: Theory and observation," J. Acoust. Soc. Am. 59, 818-838 (1976)] using the supereikonal approximation and by Dashen et al. ["Path-integral treatment of acoustic mutual coherence functions for arrays in a sound channel," J. Acoust. Soc. Am. 77, 1716-1722 (1985)] using the path integral approach; a -1 [corrected] power frequency dependence and a -1/2 [corrected] power range dependence were predicted. Recent data in shallow water in downward refractive environments with internal waves suggested that the signal coherence time of the mode arrivals follows a -3/2 power frequency dependence and a -1/2 power range dependence. Since the temporal coherence of the acoustic signal is related to the temporal coherence of the internal waves, based on the observation that the (linear) internal waves in deep and shallow waters have a similar frequency spectrum, it is argued that the modelike arrivals in deep water should exhibit a similar frequency dependence in deep and shallow waters. This argument is supported by a brute-force application of the path integral to mode arrivals based on the WKB relation between the ray and mode. It is found that the data are consistent with the -3/2 power frequency dependence but more data are needed to further test the hypothesis.  相似文献   

7.
Basic results of theoretical and experimental studies of acoustic effects caused by horizontal refraction in a shallow water are reviewed with special emphasis on the effect produced by intense internal waves on the propagation of broadband signals. Theoretical calculations and experimental data testifying to the manifestation of three-dimensional acoustic effects in the SWARM’95 experiment are presented.  相似文献   

8.
An ultrasonic reflectivity method of evaluating the acoustic parameters of porous materials saturated by air (or any other gas) is discussed. The method is based on experimental detection of waves reflected at normal incidence by the first and second interface of the material. This method is based on a temporal model of direct and inverse scattering problems for the propagation of transient ultrasonic waves in a homogeneous isotropic slab of porous material with a rigid frame [Fellah et al., J. Acoust. Soc. Am. 113, 61-73 (2003)]. Generally, the conventional ultrasonic approach can be used to determine tortuosity, and viscous and thermal characteristic lengths via transmitted waves. Porosity cannot be estimated in transmitted mode because of its very weak sensitivity. First interface use of the reflected wave at oblique incidence leads to the determination of porosity and tortuosity [Fellah et al., J. Acoust. Soc. Am. 113, 2424-2433 (2003)] but this is not possible at normal incidence. Using experimental data of reflected waves by the first and second interface at normal incidence simultaneously leads to the determination of porosity, tortuosity, viscous and thermal characteristic lengths. As with the classic ultrasonic approach for characterizing porous material saturated with one gas, both characteristic lengths are estimated individually by assuming a given ratio between them. Tests are performed using weakly resistive industrial plastic foams. Experimental and numerical results, and prospects are discussed.  相似文献   

9.
In earlier studies of acoustic scattering resonances and of the dispersive phase velocities of surface waves that generate them [see, e.g., Talmant et al., J. Acoust. Soc. Am. 86, 278-289 (1989) for spherical aluminum shells] we have demonstrated the effectiveness and accuracy of obtaining phase velocity dispersion curves from the known acoustic resonance frequencies. This possibility is offered through the condition of phase matching after each complete circumnavigation of these waves [Uberall et al., J. Acoust. Soc. Am. 61, 711-715 (1977)], which leads to a very close agreement of resonance results with those calculated from three-dimensional elasticity theory whenever the latter are available. The present investigation is based on the mentioned resonance frequency/elasticity theory connection, and we obtain comparative circumferential-wave dispersion-curve results for water-loaded, evacuated spherical metal shells of aluminum, stainless steel, and tungsten carbide. In particular, the characteristic upturn of the dispersion curves of low-order shell-borne circumferential waves (A or A0 waves) which takes place on spherical shells when the frequency tends towards very low values, is demonstrated here for all cases of the metals under consideration.  相似文献   

10.
A time-reversing array (TRA) can retrofocus acoustic energy, in both time and space, to the original sound-source location without any environmental information. This unique capability may be degraded in time-dependent or noisy acoustic environments, or when propagation losses are prevalent. In this paper, monochromatic propagation simulations (based on the parabolic equation code, RAM) are used to predict TRA retrofocusing performance in shallow-water sound channels having characteristics similar to those measured during the recent SWARM (shallow-water acoustics in a random medium) experiment. Results for the influence of source-array range, source depth, acoustic frequency, bottom absorption, internal wave strength, and round-trip time delay are presented. For a fixed channel geometry, higher frequencies, deeper sources, and lower bottom absorption improve TRA performance and allow retrofocusing at longer ranges. In a dynamic shallow-water channel containing a random superposition of linear internal waves, the size of the retrofocus is slightly decreased and sidelobes are suppressed compared to the static channel results. These improvements last for approximately 1 to 2 min for source-array ranges near 10 km at a frequency of 500 Hz. For longer time delays, the internal waves cause significant TRA retrofocus amplitude decay, and the decay rate increases with increasing internal wave activity and acoustic frequency.  相似文献   

11.
The axial resolution of conventional acoustic micro imaging is limited by the wavelength of acoustic waves. Acoustic time-frequency domain imaging was recently proposed to overcome the wavelength limit [Zhang et al., J. Acoust. Soc. Am. 118, 3706-3720 (2005)]. A continuous wavelet transform based acoustic time-frequency domain imaging technique is investigated in this paper. Experiments are performed on real 3D data collected from microelectronic packages. Results demonstrate the proposed technique reveals more image details and enhances the image contrast in comparison with conventional time domain imaging.  相似文献   

12.
An attempt has been made to model the acoustic pressure field and the spatial distribution of the cavitation phenomena in a dual frequency sonic processor. A methodology has been presented with numerical simulations to optimize the conditions of the dual frequency acoustic field. The simulations presented in this work reveal that with manipulation of the parameters (viz., frequency ratio and the pressure amplitude ratio of the two acoustic waves and the phase difference between the two waves) of the dual frequency acoustic field it is possible to control the mode (stable or transient) and spatial distribution of the cavitation events in the sonic processor. It has been shown that two major shortcomings of the sonic reactor, viz., directional sensitivity of the cavitation events and erosion of the sonicator surface can be overcome by application of a dual frequency acoustic field.  相似文献   

13.
沈建国  陈宇  张海澜 《声学学报》2002,27(3):229-233
介绍铝筒内贴壁声源激发的声场的实验结果。铝筒放在水中,发射和接收换能器位于铝筒的内壁上。通过改变发射和接收换能器的相对位置,得到不同的接收波形。实验结果表明接收信号包括直达波、筒壁反射波、筒壁模式波和环绕筒壁传播的面波的贡献。  相似文献   

14.
An acoustic method based on sound transmission is proposed for deducing the static thermal permeability and the inertial factor of porous materials having a rigid frame at low frequencies. The static thermal permeability of porous material is a geometrical parameter equal to the inverse trapping constant of the solid frame [Lafarge et al., J. Acoust. Soc. Am. 102, 1995 (1997)] and is an important characteristic of the porous material. The inertial factor [Norris., J. Wave Mat. Interact. 1, 365 (1986)] describes the fluid structure interactions in the low frequency range (1-3 kHz). The proposed method is based on a temporal model of the direct and inverse scattering problems for the propagation of transient audible frequency waves in a homogeneous isotropic slab of porous material having a rigid frame. The static thermal permeability and the inertial factor are determined from the solution of the inverse problem. The minimization between experiment and theory is made in the time domain. Tests are performed using industrial plastic foams. Experimental and theoretical data are in good agreement. Furthermore, the prospects are discussed. This method has the advantage of being simple, rapid, and efficient.  相似文献   

15.
Combustion instabilities are caused by the interaction of unsteady heat releases and acoustic waves. To mitigate combustion instabilities, perforated liners, typically subjected to a low Mach number bias flow (a cooling flow through perforated holes), are fitted along the bounding walls of a combustor. They dissipate the acoustic waves by generating vorticity at the rims of perforated apertures. To investigate the absorption of plane waves by a perforated liner with bias flow, a time-domain numerical model of a cylindrical lined duct is developed. The liners' damping mechanism is characterized by using a time-domain "compliance." The development of such time-domain compliance is based on simplified or unsimplified Rayleigh conductivity. Numerical simulations of two different configurations of lined duct systems are performed by combining a 1D acoustic wave model with the compliance model. Comparison is then made between the results from the present models, and those from the experiment and the frequency-domain model of previous investigation [Eldredge and Dowling, J. Fluid Mech. 485, 307-335(2003)]. Good agreement is observed. This confirms that the present model can be used to simulate the propagation and dissipation of acoustic plane waves in a lined duct in real-time.  相似文献   

16.
This paper provides a temporal model of the direct and inverse scattering problem for the propagation of transient ultrasonic waves in a homogeneous isotropic slab of porous material having a rigid frame. This new time domain model of wave propagation takes into account the viscous and thermal losses of the medium as described by the model of Johnson et al. [D. L. Johnson, J. Koplik, and R. Dashen, J. Fluid. Mech. 176, 379 (1987)] and Allard [J. F. Allard (Chapman and Hall, London, 1993)] modified by a fractional calculus based method applied in the time domain. This paper is devoted to the analytical calculus of acoustic field in a slab of porous material. The main result is the derivation of the expression of the scattering operators (reflection and transmission) which are the responses of the medium to an incident acoustic pulse. In this model the reflection operator is the sum of two contributions: the first interface and the bulk of the medium. Experimental and numerical results are given as a validation of our model.  相似文献   

17.
胡平  彭朝晖  李整林 《应用声学》2021,40(5):731-737
浅海内波是导致声场时间相关半径减小的一个重要原因.利用2015年南中国海声传播起伏实验,对比分析了线性内波以及孤立子内波环境下声场时间相关半径的统计特性.实验数据(175~225 Hz)表明,大振幅孤立子内波的存在极大地降低了声场的时间相关半径,声场时间相关半径从线性内波环境下的1~3 h,降低为孤立子内波环境下的小于...  相似文献   

18.
A new concept for the enclosure-acoustic prediction derived from the mathematical theory of diffusion was proposed some years ago [J. Picaut et al., Acustica 1997]. This model has been applied to predict the sound level distribution in rooms of simple geometries with good accuracy and a relatively low calculation time. However, in situations related with (optimal) acoustic design, the need to evaluate multiple simulations may increase the computational cost. The aim of this work is to provide an approximately equivalent two-dimensional diffusion model achieving similar results with a significant reduction of the execution time. The proposed simplified model is obtained by means of the Kantorovich method. Comparisons of numerical simulations performed with the full diffusion model and the software CATT-Acoustic® are presented to show the efficiency of the simplified diffusion model.  相似文献   

19.
20.
Investigation of thin metallic film properties by means of picosecond ultrasonics [C. Thomsen et al., Phys. Rev. Lett. 53, 989 (1984)] has been under the scope of several studies. Generation of longitudinal and shear waves [T. Pézeril et al., Phys. Rev. B 73, 132301 (2006); O. Matsuda et al., Phys. Rev. Lett. 93, 095501 (2004)] with a wave vector normal to the film free surface has been demonstrated. Such measurements cannot provide complete information about properties of anisotropic films. Extreme focusing of a laser pump beam (≈0.5 μm) on the sample surface has recently allowed us to provide evidence of picosecond acoustic diffraction in thin metallic films (≈1 μm) [C. Rossignol et al., Phys. Rev. Lett. 94, 166106 (2005)]. The resulting longitudinal and shear wavefronts propagate at group velocity through the bulk of the film. To interpret the received signals, source directivity diagrams are calculated taking into account material anisotropy, optical penetration, and laser beam width on the sample surface. It is shown that acoustic diffraction increases with optical penetration, so competing with the increasing of directivity caused by beam width. Reflection with mode conversion at the film-substrate interface is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号