首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let P(G,λ) be the chromatic polynomial of a graph G. Two graphs G and H are said to be chromatically equivalent, denoted GH, if P(G,λ)=P(H,λ). We write [G]={HHG}. If [G]={G}, then G is said to be chromatically unique. In this paper, we first characterize certain complete 5-partite graphs with 5n+3 vertices according to the number of 6-independent partitions of G. Using these results, we investigate the chromaticity of G with certain star or matching deleted. As a by-product, many new families of chromatically unique complete 5-partite graphs with certain star or matching deleted are obtained.  相似文献   

2.
Brooks' Theorem says that if for a graph G,Δ(G)=n, then G is n-colourable, unless (1) n=2 and G has an odd cycle as a component, or (2) n>2 and Kn+1 is a component of G. In this paper we prove that if a graph G has none of some three graphs (K1,3;K5?e and H) as an induced subgraph and if Δ(G)?6 and d(G)<Δ(G), then χ(G)<Δ(G). Also we give examples to show that the hypothesis Δ(G)?6 can not be non-trivially relaxed and the graph K5?e can not be removed from the hypothesis. Moreover, for a graph G with none of K1,3;K5?e and H as an induced subgraph, we verify Borodin and Kostochka's conjecture that if for a graph G,Δ(G)?9 and d(G)<Δ(G), then χ(G)<Δ(G).  相似文献   

3.
G.C. Lau  Y.H. Peng 《Discrete Mathematics》2009,309(12):4089-4094
Let P(G,λ) be the chromatic polynomial of a graph G. A graph G is chromatically unique if for any graph H, P(H,λ)=P(G,λ) implies H is isomorphic to G. For integers k≥0, t≥2, denote by K((t−1)×p,p+k) the complete t-partite graph that has t−1 partite sets of size p and one partite set of size p+k. Let K(s,t,p,k) be the set of graphs obtained from K((t−1)×p,p+k) by adding a set S of s edges to the partite set of size p+k such that 〈S〉 is bipartite. If s=1, denote the only graph in K(s,t,p,k) by K+((t−1)×p,p+k). In this paper, we shall prove that for k=0,1 and p+ks+2, each graph GK(s,t,p,k) is chromatically unique if and only if 〈S〉 is a chromatically unique graph that has no cut-vertex. As a direct consequence, the graph K+((t−1)×p,p+k) is chromatically unique for k=0,1 and p+k≥3.  相似文献   

4.
For k?0, ?k(G) denotes the Lick-White vertex partition number of G. A graph G is called (n, k)-critical if it is connected and for each edge e of G?k(G–e)<?k(G)=n. We describe all (2, k)-critical graphs and for n?3,k?1 we extend and simplify a result of Bollobás and Harary giving one construction of a family of (n, k)-critical graphs of every possible order.  相似文献   

5.
Let P(G,λ) be the chromatic polynomial of a graph G. Two graphs G and H are said to be chromatically equivalent, denoted G~H, if P(G,λ)=P (H,λ). We write [G]={H|H~G}. If[G]={G}, then G is said to be chromatically unique. In this paper, we first characterize certain complete 6-partite graphs with 6n+1 vertices according to the number of 7-independent partitions of G. Using these results, we investigate the chromaticity of G with certain star or matching deleted. As a by-product, many new families of chromatically unique complete 6-partite graphs with certain star or matching deleted are obtained.  相似文献   

6.
Let F(n,e) be the collection of all simple graphs with n vertices and e edges, and for GF(n,e) let P(G;λ) be the chromatic polynomial of G. A graph GF(n,e) is said to be optimal if another graph HF(n,e) does not exist with P(H;λ)?P(G;λ) for all λ, with strict inequality holding for some λ. In this paper we derive necessary conditions for bipartite graphs to be optimal, and show that, contrarily to the case of lower bounds, one can find values of n and e for which optimal graphs are not unique. We also derive necessary conditions for bipartite graphs to have the greatest number of cycles of length 4.  相似文献   

7.
A graph is chromatically unique if it is uniquely determined by its chromatic polynomial. Let G be a chromatically unique graph and let Km denote the complete graph on m vertices. This paper is mainly concerned with the chromaticity of Km + G where + denotes the join of graphs. Also, it is shown that a large family of connected vertextransitive graphs that are not chromatically unique can be obtained by taking the join of some vertex-transitive graphs. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
Let α(G) and χ(G) denote the independence number and chromatic number of a graph G, respectively. Let G×H be the direct product graph of graphs G and H. We show that if G and H are circular graphs, Kneser graphs, or powers of cycles, then α(G×H)=max{α(G)|V(H)|,α(H)|V(G)|} and χ(G×H)=min{χ(G),χ(H)}.  相似文献   

9.
A local coloring of a graph G is a function c:V(G)→N having the property that for each set SV(G) with 2≤|S|≤3, there exist vertices u,vS such that |c(u)−c(v)|≥mS, where mS is the number of edges of the induced subgraph 〈S〉. The maximum color assigned by a local coloring c to a vertex of G is called the value of c and is denoted by χ?(c). The local chromatic number of G is χ?(G)=min{χ?(c)}, where the minimum is taken over all local colorings c of G. The local coloring of graphs was introduced by Chartrand et al. [G. Chartrand, E. Salehi, P. Zhang, On local colorings of graphs, Congressus Numerantium 163 (2003) 207-221]. In this paper the local coloring of Kneser graphs is studied and the local chromatic number of the Kneser graph K(n,k) for some values of n and k is determined.  相似文献   

10.
The clique graph K(G) of a simple graph G is the intersection graph of its maximal complete subgraphs, and we define iterated clique graphs by K0(G)=G, Kn+1(G)=K(Kn(G)). We say that two graphs are homotopy equivalent if their simplicial complexes of complete subgraphs are so. From known results, it can be easily inferred that Kn(G) is homotopy equivalent to G for every n if G belongs to the class of clique-Helly graphs or to the class of dismantlable graphs. However, in both of these cases the collection of iterated clique graphs is finite up to isomorphism. In this paper, we show two infinite classes of clique-divergent graphs that satisfy G?Kn(G) for all n, moreover Kn(G) and G are simple-homotopy equivalent. We provide some results on simple-homotopy type that are of independent interest.  相似文献   

11.
The stable Kneser graph SGn,k, n?1, k?0, introduced by Schrijver (1978) [19], is a vertex critical graph with chromatic number k+2, its vertices are certain subsets of a set of cardinality m=2n+k. Björner and de Longueville (2003) [5] have shown that its box complex is homotopy equivalent to a sphere, Hom(K2,SGn,k)?Sk. The dihedral group D2m acts canonically on SGn,k, the group C2 with 2 elements acts on K2. We almost determine the (C2×D2m)-homotopy type of Hom(K2,SGn,k) and use this to prove the following results.The graphs SG2s,4 are homotopy test graphs, i.e. for every graph H and r?0 such that Hom(SG2s,4,H) is (r−1)-connected, the chromatic number χ(H) is at least r+6.If k∉{0,1,2,4,8} and n?N(k) then SGn,k is not a homotopy test graph, i.e. there are a graph G and an r?1 such that Hom(SGn,k,G) is (r−1)-connected and χ(G)<r+k+2.  相似文献   

12.
Let P(G, λ) be the chromatic polynomial of a graph G. A graph G is chromatically unique if for any graph H, P(H, λ) = P(G, λ) implies H is isomorphic to G. Liu et al. [Liu, R. Y., Zhao, H. X., Ye, C. F.: A complete solution to a conjecture on chromatic uniqueness of complete tripartite graphs. Discrete Math., 289, 175–179 (2004)], and Lau and Peng [Lau, G. C., Peng, Y. H.: Chromatic uniqueness of certain complete t-partite graphs. Ars Comb., 92, 353–376 (2009)] show that K(p − k, p − i, p) for i = 0, 1 are chromatically unique if pk + 2 ≥ 4. In this paper, we show that if 2 ≤ i ≤ 4, the complete tripartite graph K(p − k, p − i, p) is chromatically unique for integers ki and pk 2/4 + i + 1.  相似文献   

13.
For a graph G,P(G,λ)denotes the chromatic polynomial of G. Two graphs G and H are said to be chromatically equivalent,denoted by G-H,if P(G,λ)=p(H,λ). Let[G]= {H|H-G}. If [G]={G},then G is said to be chromatically unique. For a complete 5-partite graph G with 5n vertices, define θ(G)=(a(G,6)-2^n 1-2^n-1 5)/2n-2,where a(G,6) denotes the number of 6-independent partitions of G. In this paper, the authors show that θ(G)≥0 and determine all graphs with θ(G)= 0, 1, 2, 5/2, 7/2, 4, 17/4. By using these results the chromaticity of 5-partite graphs of the form G-S with θ(G)=0,1,2,5/2,7/2,4,17/4 is investigated,where S is a set of edges of G. Many new chromatically unique 5-partite graphs are obtained.  相似文献   

14.
Let k,n be integers with 2≤kn, and let G be a graph of order n. We prove that if max{dG(x),dG(y)}≥(nk+1)/2 for any x,yV(G) with xy and xyE(G), then G has k vertex-disjoint subgraphs H1,…,Hk such that V(H1)∪?∪V(Hk)=V(G) and Hi is a cycle or K1 or K2 for each 1≤ik, unless k=2 and G=C5, or k=3 and G=K1C5.  相似文献   

15.
A balanced vertex-coloring of a graph G is a function c from V(G) to {−1,0,1} such that ∑{c(v):vV(G)}=0. A subset U of V(G) is called a balanced set if U induces a connected subgraph and ∑{c(v):vU}=0. A decomposition V(G)=V1∪?∪Vr is called a balanced decomposition if Vi is a balanced set for 1≤ir.In this paper, the balanced decomposition number f(G) of G is introduced; f(G) is the smallest integer s such that for any balanced vertex-coloring c of G, there exists a balanced decomposition V(G)=V1∪?∪Vr with |Vi|≤s for 1≤ir. Balanced decomposition numbers of some basic families of graphs such as complete graphs, trees, complete bipartite graphs, cycles, 2-connected graphs are studied.  相似文献   

16.
Given two graphs G and H, let f(G,H) denote the maximum number c for which there is a way to color the edges of G with c colors such that every subgraph H of G has at least two edges of the same color. Equivalently, any edge-coloring of G with at least rb(G,H)=f(G,H)+1 colors contains a rainbow copy of H, where a rainbow subgraph of an edge-colored graph is such that no two edges of it have the same color. The number rb(G,H) is called the rainbow number ofHwith respect toG, and simply called the bipartite rainbow number ofH if G is the complete bipartite graph Km,n. Erd?s, Simonovits and Sós showed that rb(Kn,K3)=n. In 2004, Schiermeyer determined the rainbow numbers rb(Kn,Kk) for all nk≥4, and the rainbow numbers rb(Kn,kK2) for all k≥2 and n≥3k+3. In this paper we will determine the rainbow numbers rb(Km,n,kK2) for all k≥1.  相似文献   

17.
For graphs G and H, the Ramsey numberR(G,H) is the smallest positive integer n such that every graph F of order n contains G or the complement of F contains H. For the path Pn and the wheel Wm, it is proved that R(Pn,Wm)=2n-1 if m is even, m?4, and n?(m/2)(m-2), and R(Pn,Wm)=3n-2 if m is odd, m?5, and n?(m-1/2)(m-3).  相似文献   

18.
Wensong Lin 《Discrete Mathematics》2008,308(16):3565-3573
The generalized Mycielskians of graphs (also known as cones over graphs) are the natural generalization of the Mycielskians of graphs (which were first introduced by Mycielski in 1955). Given a graph G and any integer p?0, one can transform G into a new graph μp(G), the p-Mycielskian of G. In this paper, we study the kth chromatic numbers χk of Mycielskians and generalized Mycielskians of graphs. We show that χk(G)+1?χk(μ(G))?χk(G)+k, where both upper and lower bounds are attainable. We then investigate the kth chromatic number of Mycielskians of cycles and determine the kth chromatic number of p-Mycielskian of a complete graph Kn for any integers k?1, p?0 and n?2. Finally, we prove that if a graph G is a/b-colorable then the p-Mycielskian of G, μp(G), is (at+bp+1)/bt-colorable, where . And thus obtain graphs G with m(G) grows exponentially with the order of G, where m(G) is the minimal denominator of a a/b-coloring of G with χf(G)=a/b.  相似文献   

19.
Let G be a simple graph, and let p be a positive integer. A subset DV(G) is a p-dominating set of the graph G, if every vertex vV(G)-D is adjacent to at least p vertices in D. The p-domination numberγp(G) is the minimum cardinality among the p-dominating sets of G. Note that the 1-domination number γ1(G) is the usual domination numberγ(G). This definition immediately leads to the inequality γ(G)?γ2(G).In this paper we present some sufficient as well as some necessary conditions for graphs G with the property that γ2(G)=γ(G). In particular, we characterize all cactus graphs H with γ2(H)=γ(H).  相似文献   

20.
The notion of ×-homotopy from [Anton Dochtermann, Hom complexes and homotopy theory in the category of graphs, European J. Combin., in press] is investigated in the context of the category of pointed graphs. The main result is a long exact sequence that relates the higher homotopy groups of the space Hom(G,H) with the homotopy groups of Hom(G,HI). Here Hom(G,H) is a space which parameterizes pointed graph maps from G to H (a pointed version of the usual Hom complex), and HI is the graph of based paths in H. As a corollary it is shown that πi(Hom(G,H))≅×[G,ΩiH], where ΩH is the graph of based closed paths in H and ×[G,K] is the set of ×-homotopy classes of pointed graph maps from G to K. This is similar in spirit to the results of [Eric Babson, Hélène Barcelo, Mark de Longueville, Reinhard Laubenbacher, Homotopy theory of graphs, J. Algebraic Combin. 24 (1) (2006) 31-44], where the authors seek a space whose homotopy groups encode a similarly defined homotopy theory for graphs. The categorical connections to those constructions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号