首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A kernel N of a digraph D is an independent set of vertices of D such that for every wV(D)−N there exists an arc from w to N. If every induced subdigraph of D has a kernel, D is said to be a kernel perfect digraph. D is called a critical kernel imperfect digraph when D has no kernel but every proper induced subdigraph of D has a kernel. If F is a set of arcs of D, a semikernel modulo F of D is an independent set of vertices S of D such that for every zV(D)−S for which there exists an (S,z)-arc of DF, there also exists an (z,S)-arc in D. In this work we show sufficient conditions for an infinite digraph to be a kernel perfect digraph, in terms of semikernel modulo F. As a consequence it is proved that symmetric infinite digraphs and bipartite infinite digraphs are kernel perfect digraphs. Also we give sufficient conditions for the following classes of infinite digraphs to be kernel perfect digraphs: transitive digraphs, quasi-transitive digraphs, right (or left)-pretransitive digraphs, the union of two right (or left)-pretransitive digraphs, the union of a right-pretransitive digraph with a left-pretransitive digraph, the union of two transitive digraphs, locally semicomplete digraphs and outward locally finite digraphs.  相似文献   

2.
In this paper, D=(V(D),A(D)) denotes a loopless directed graph (digraph) with at most one arc from u to v for every pair of vertices u and v of V(D). Given a digraph D, we say that D is 3-quasi-transitive if, whenever uvwz in D, then u and z are adjacent or u=z. In Bang-Jensen (2004) [3], Bang-Jensen introduced 3-quasi-transitive digraphs and claimed that the only strong 3-quasi-transitive digraphs are the strong semicomplete digraphs and strong semicomplete bipartite digraphs. In this paper, we exhibit a family of strong 3-quasi-transitive digraphs distinct from strong semicomplete digraphs and strong semicomplete bipartite digraphs and provide a complete characterization of strong 3-quasi-transitive digraphs.  相似文献   

3.
Given a digraph G=(V,A), the subdigraph of G induced by a subset X of V is denoted by G[X]. With each digraph G=(V,A) is associated its dual G?=(V,A?) defined as follows: for any x,yV, (x,y)∈A? if (y,x)∈A. Two digraphs G and H are hemimorphic if G is isomorphic to H or to H?. Given k>0, the digraphs G=(V,A) and H=(V,B) are k-hemimorphic if for every XV, with |X|≤k, G[X] and H[X] are hemimorphic. A class C of digraphs is k-recognizable if every digraph k-hemimorphic to a digraph of C belongs to C. In another vein, given a digraph G=(V,A), a subset X of V is an interval of G provided that for a,bX and xVX, (a,x)∈A if and only if (b,x)∈A, and similarly for (x,a) and (x,b). For example, 0?, {x}, where xV, and V are intervals called trivial. A digraph is indecomposable if all its intervals are trivial. We characterize the indecomposable digraphs which are 3-hemimorphic to a non-indecomposable digraph. It follows that the class of indecomposable digraphs is 4-recognizable.  相似文献   

4.
Let D be an edge-coloured digraph, V(D) will denote the set of vertices of D; a set NV(D) is said to be a kernel by monochromatic paths of D if it satisfies the following two conditions: For every pair of different vertices u,vN there is no monochromatic directed path between them and; for every vertex xV(D)−N there is a vertex yN such that there is an xy-monochromatic directed path.In this paper we consider some operations on edge-coloured digraphs, and some sufficient conditions for the existence or uniqueness of kernels by monochromatic paths of edge-coloured digraphs formed by these operations from another edge-coloured digraphs.  相似文献   

5.
A digraph D is connected if the underlying undirected graph of D is connected. A subgraph H of an acyclic digraph D is convex if there is no directed path between vertices of H which contains an arc not in H. We find the minimum and maximum possible number of connected convex subgraphs in a connected acyclic digraph of order n. Connected convex subgraphs of connected acyclic digraphs are of interest in the area of modern embedded processors technology.  相似文献   

6.
A set X of vertices of an acyclic graph is convex if any vertex on a directed walk between elements of X is itself in X. We construct an algorithm for generating all input–output constrained convex (IOCC) sets in an acyclic digraph, which uses several novel ideas. We show that the time complexity of our algorithm significantly improves the best one known from the literature. IOCC sets of acyclic digraphs are of interest in the area of modern embedded processor technology.  相似文献   

7.
The Max Cut problem is an NP-hard problem and has been studied extensively. Alon et?al. (J Graph Theory 55:1–13, 2007) studied a directed version of the Max Cut problem and observed its connection to the Hall ratio of graphs. They proved, among others, that if an acyclic digraph has m edges and each vertex has indegree or outdegree at most 1, then it has a directed cut of size at least 2m/5. Lehel et?al. (J Graph Theory 61:140–156, 2009) extended this result by replacing the “acyclic digraphs” with the “digraphs containing no directed triangles”. In this paper, we characterize the acyclic digraphs with m edges whose maximum dicuts have exactly 2m/5 edges, and our approach gives an alternative proof of the result of Lehel et?al. We also show that there are infinitely many positive rational numbers β < 2/5 for which there exist digraphs D (with directed triangles) such that each vertex of D has indegree or outdegree at most 1, and any maximum directed cut in D has size precisely β|E(D)|.  相似文献   

8.
We generalize the concept of efficient total domination from graphs to digraphs. An efficiently total dominating set X of a digraph D is a vertex subset such that every vertex of D has exactly one predecessor in X. We study graphs that permit an orientation having such a set and give complexity results and characterizations. Furthermore, we study the computational complexity of the (weighted) efficient total domination problem for several digraph classes. In particular we deal with most of the common generalizations of tournaments, like locally semicomplete and arc-locally semicomplete digraphs.  相似文献   

9.
10.
Let D be a digraph with vertex set V(D). A partition of V(D) into k acyclic sets is called a k-coloring of D. The minimum integer k for which there exists a k-coloring of D is the dichromatic number χ(D) of the digraph D. Denote Gn,k the set of the digraphs of order n with the dichromatic number k2. In this note, we characterize the digraph which has the maximal spectral radius in Gn,k. Our result generalizes the result of [8] by Feng et al.  相似文献   

11.
We prove that Moore digraphs, and some other classes of extremal digraphs, are weakly distance-regular in the sense that there is an invariance of the number of walks between vertices at a given distance. As weakly distance-regular digraphs, we then compute their complete spectrum from a ‘small’ intersection matrix. This is a very useful tool for deriving some results about their existence and/or their structural properties. For instance, we present here an alternative and unified proof of the existence results on Moore digraphs, Moore bipartite digraphs and, more generally, Moore generalized p-cycles. In addition, we show that the line digraph structure appears as a characteristic property of any Moore generalized p-cycle of diameter D?≥?2p.  相似文献   

12.
We study the following problem: Given a digraph D, decide if there is a cycle B in D and a cycle C in its underlying undirected graph UG(D) such that V (B)??V (C)=?. Whereas the problem is NP-complete if, as additional part of the input, a vertex x is prescribed to be contained in C, we prove that one can decide the existence of B,C in polynomial time under the (mild) additional assumption that D is strongly connected. Our methods actually find B,C in polynomial time if they exist. The behaviour of the problem as well as our solution depend on the cycle transversal number ?? (D) of D, i.e. the smallest cardinality of a set T of vertices in D such that D-T is acyclic: If ?? (D)??3 then we employ McCuaig??s framework on intercyclic digraphs to (always) find these cycles. If ?? (D) = 2 then we can characterize the digraphs for which the answer is ??yes?? by using topological methods relying on Thomassen??s theorem on 2-linkages in acyclic digraphs. For the case ?? (D)??1 we provide an algorithm independent from any earlier work.  相似文献   

13.
Let (X,L,V) be a triplet where X is an irreducible smooth complex projective variety, L is an ample and spanned line bundle on X and VH0(X,L) spans L. The discriminant locus D(X,V)⊂|V| is the algebraic subset of singular elements of |V|. We study the components of D(X,V) in connection with the jumping sets of (X,V), generalizing the classical biduality theorem. We also deal with the degree of the discriminant (codegree of (X,L,V)) giving some bounds on it and classifying curves and surfaces of codegree 2 and 3. We exclude the possibility for the codegree to be 1. Significant examples are provided.  相似文献   

14.
For digraphs D and H, a mapping f:V(D)→V(H) is a homomorphism of D to H if uvA(D) implies f(u)f(v)∈A(H). Let H be a fixed directed or undirected graph. The homomorphism problem for H asks whether a directed or undirected input graph D admits a homomorphism to H. The list homomorphism problem for H is a generalization of the homomorphism problem for H, where every vertex xV(D) is assigned a set Lx of possible colors (vertices of H).The following optimization version of these decision problems generalizes the list homomorphism problem and was introduced in Gutin et al. [Level of repair analysis and minimum cost homomorphisms of graphs, Discrete Appl. Math., to appear], where it was motivated by a real-world problem in defence logistics. Suppose we are given a pair of digraphs D,H and a positive integral cost ci(u) for each uV(D) and iV(H). The cost of a homomorphism f of D to H is . For a fixed digraph H, the minimum cost homomorphism problem for H is stated as follows: for an input digraph D and costs ci(u) for each uV(D) and iV(H), verify whether there is a homomorphism of D to H and, if one exists, find such a homomorphism of minimum cost.We obtain dichotomy classifications of the computational complexity of the list homomorphism and minimum cost homomorphism problems, when H is a semicomplete digraph (digraph in which there is at least one arc between any two vertices). Our dichotomy for the list homomorphism problem coincides with the one obtained by Bang-Jensen, Hell and MacGillivray in 1988 for the homomorphism problem when H is a semicomplete digraph: both problems are polynomial solvable if H has at most one cycle; otherwise, both problems are NP-complete. The dichotomy for the minimum cost homomorphism problem is different: the problem is polynomial time solvable if H is acyclic or H is a cycle of length 2 or 3; otherwise, the problem is NP-hard.  相似文献   

15.
A kernel by properly colored paths of an arc-colored digraph D is a set S of vertices of D such that (i) no two vertices of S are connected by a properly colored directed path in D, and (ii) every vertex outside S can reach S by a properly colored directed path in D. In this paper, we conjecture that every arc-colored digraph with all cycles properly colored has such a kernel and verify the conjecture for digraphs with no intersecting cycles, semi-complete digraphs and bipartite tournaments, respectively. Moreover, weaker conditions for the latter two classes of digraphs are given.  相似文献   

16.
We consider some problems concerning generalizations of embeddings of acyclic digraphs inton-dimensional dicubes. In particular, we define an injectioni from a digraphD into then-dimensional dicubeQ n to be animmersion if for any two elementsa andb inD there is a directed path inD froma tob iff there is a directed path inQ n fromi(a) toi(b). We further define the immersion to bestrong iff there is a way of choosing these paths so that paths inQ n corresponding to arcs inD have disjoint interiors, and we introduce a natural notion of “minimality” on the set of arcs of a digraph in terms of its paths. Our main theorem then becomes:Every (minimal) n-element acyclic digraph can be (strongly) immersed in Q n. We also present examples ofn-element digraphs which cannot be immersed inQ n?1 and examples of 9n-element non-minimal digraphs which cannot be strongly immersed inQ10n ?1. We conclude with some applications.  相似文献   

17.
For digraphs D and H, a mapping f:V(D)→V(H) is a homomorphism ofDtoH if uvA(D) implies f(u)f(v)∈A(H). For a fixed directed or undirected graph H and an input graph D, the problem of verifying whether there exists a homomorphism of D to H has been studied in a large number of papers. We study an optimization version of this decision problem. Our optimization problem is motivated by a real-world problem in defence logistics and was introduced recently by the authors and M. Tso.Suppose we are given a pair of digraphs D,H and a cost ci(u) for each uV(D) and iV(H). The cost of a homomorphism f of D to H is ∑uV(D)cf(u)(u). Let H be a fixed digraph. The minimum cost homomorphism problem for H, MinHOMP(H), is stated as follows: For input digraph D and costs ci(u) for each uV(D) and iV(H), verify whether there is a homomorphism of D to H and, if it does exist, find such a homomorphism of minimum cost. In our previous paper we obtained a dichotomy classification of the time complexity of when H is a semicomplete digraph. In this paper we extend the classification to semicomplete k-partite digraphs, k≥3, and obtain such a classification for bipartite tournaments.  相似文献   

18.
For a digraph D, let L(D) and S(D) denote its line digraph and subdivision digraph, respectively. The motivation of this paper is to solve the digraph equation L(S(D))=S(L(D)). We show that L(S(D)) and S(L(D)) are cospectral if and only if D and L(D) have the same number of arcs. Further, we characterize the situation that L(S(D)) and S(L(D)) are isomorphic. Our approach introduces the new notion, the proper image D* of a digraph D, and a new type of connectedness for digraphs. The concept D* plays an important role in the main result of this paper. It is also useful in other aspects of the study of line digraphs. For example, L(D) is connected if and only if D* is connected; L(D) is functional (contrafunctional) if and only if D* is functional (contrafunctional). Some related results are also presented.  相似文献   

19.
20.
A digraph is locally-in semicomplete if for every vertex of D its in-neighborhood induces a semicomplete digraph and it is locally semicomplete if for every vertex of D the in-neighborhood and the out-neighborhood induces a semicomplete digraph. The locally semicomplete digraphs where characterized in 1997 by Bang-Jensen et al. and in 1998 Bang-Jensen and Gutin posed the problem if finding a kernel in a locally-in semicomplete digraph is polynomial or not. A kernel of a digraph is a set of vertices, which is independent and absorbent. A digraph D such that every proper induced subdigraph of D has a kernel is said to be critical kernel imperfect digraph (CKI-digraph) if the digraph D does not have a kernel. A digraph without an induced CKI-digraph as a subdigraph does have a kernel. We characterize the locally semicomplete digraphs, which are CKI. As a consequence of this characterization we conclude that determinate whether a locally semicomplete digraph is a CKI-digraph or not, is polynomial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号