首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vertex-critical graph conjecture (critical graph conjecture respectively) states that every vertex-critical (critical) graph has an odd number of vertices. In this note we prove that if G is a critical graph of even order, then G has at least three vertices of less-than-maximum valency. In addition, if G is a 3-critical multigraph of smallest even order, then G is simple and has no triangles.  相似文献   

2.
The maximum matching graph M(G) of a graph G is a simple graph whose vertices are the maximum matchings of G and where two maximum matchings are adjacent in M(G) if they differ by exactly one edge. In this paper, we prove that if a graph is isomorphic to its maximum matching graph, then every block of the graph is an odd cycle.  相似文献   

3.
This paper considers some classes of graphs which are easily seen to have many perfect matchings. Such graphs can be considered robust with respect to the property of having a perfect matching if under vertex deletions (with some mild restrictions), the resulting subgraph continues to have a perfect matching. It is clear that you can destroy the property of having a perfect matching by deleting an odd number of vertices, by upsetting a bipartition or by deleting enough vertices to create an odd component. One class of graphs we consider is the m×m lattice graph (or grid graph) for m even. Matchings in such grid graphs correspond to coverings of an m×m checkerboard by dominoes. If in addition to the easy conditions above, we require that the deleted vertices be apart, the resulting graph has a perfect matching. The second class of graphs we consider is a k-fold product graph consisting of k copies of a given graph G with the ith copy joined to the i+1st copy by a perfect matching joining copies of the same vertex. We show that, apart from some easy restrictions, we can delete any vertices from the kth copy of G and find a perfect matching in the product graph with k suitably large.  相似文献   

4.
A perfect 2-matching M of a graph G is a spanning subgraph of G such that each component of M is either an edge or a cycle. A graph G is said to be 2-matching-covered if every edge of G lies in some perfect 2-matching of G. A 2-matching-covered graph is equivalent to a “regularizable” graph, which was introduced and studied by Berge. A Tutte-type characterization for 2-matching-covered graph was given by Berge. A 2-matching-covered graph is minimal if Ge is not 2-matching-covered for all edges e of G. We use Berge’s theorem to prove that the minimum degree of a minimal 2-matching-covered graph other than K2 and K4 is 2 and to prove that a minimal 2-matching-covered graph other than K4 cannot contain a complete subgraph with at least 4 vertices.  相似文献   

5.
Erd?s conjectured that if G is a triangle free graph of chromatic number at least k≥3, then it contains an odd cycle of length at least k 2?o(1) [13,15]. Nothing better than a linear bound ([3], Problem 5.1.55 in [16]) was so far known. We make progress on this conjecture by showing that G contains an odd cycle of length at least Ω(k log logk). Erd?s’ conjecture is known to hold for graphs with girth at least five. We show that if a graph with girth four is C 5 free, then Erd?s’ conjecture holds. When the number of vertices is not too large we can prove better bounds on χ. We also give bounds on the chromatic number of graphs with at most r cycles of length 1 mod k, or at most s cycles of length 2 mod k, or no cycles of length 3 mod k. Our techniques essentially consist of using a depth first search tree to decompose the graph into ordered paths, which are then fed to an online coloring algorithm. Using this technique we give simple proofs of some old results, and also obtain several other results. We also obtain a lower bound on the number of colors which an online coloring algorithm needs to use to color triangle free graphs.  相似文献   

6.
We say that H has an odd complete minor of order at least l if there are l vertex disjoint trees in H such that every two of them are joined by an edge, and in addition, all the vertices of trees are two-colored in such a way that the edges within the trees are bichromatic, but the edges between trees are monochromatic. Gerards and Seymour conjectured that if a graph has no odd complete minor of order l, then it is (l ? 1)-colorable. This is substantially stronger than the well-known conjecture of Hadwiger. Recently, Geelen et al. proved that there exists a constant c such that any graph with no odd K k -minor is ck√logk-colorable. However, it is not known if there exists an absolute constant c such that any graph with no odd K k -minor is ck-colorable. Motivated by these facts, in this paper, we shall first prove that, for any k, there exists a constant f(k) such that every (496k + 13)-connected graph with at least f(k) vertices has either an odd complete minor of size at least k or a vertex set X of order at most 8k such that G–X is bipartite. Since any bipartite graph does not contain an odd complete minor of size at least three, the second condition is necessary. This is an analogous result of Böhme et al. We also prove that every graph G on n vertices has an odd complete minor of size at least n/2α(G) ? 1, where α(G) denotes the independence number of G. This is an analogous result of Duchet and Meyniel. We obtain a better result for the case α(G)= 3.  相似文献   

7.
A simple graph G is k-ordered (respectively, k-ordered hamiltonian), if for any sequence of k distinct vertices v1,…,vkof G there exists a cycle (respectively, hamiltonian cycle) in G containing these k vertices in the specified order. In 1997 Ng and Schultz introduced these concepts of cycle orderability and posed the question of the existence of 3-regular 4-ordered (hamiltonian) graphs other than K4 and K3,3. Ng and Schultz observed that a 3-regular 4-ordered graph on more than 4 vertices is triangle free. We prove that a 3-regular 4-ordered graph G on more than 6 vertices is square free,and we show that the smallest graph that is triangle and square free, namely the Petersen graph, is 4-ordered. Furthermore, we prove that the smallest graph after K4 and K3,3 that is 3-regular 4-ordered hamiltonianis the Heawood graph. Finally, we construct an infinite family of 3-regular 4-ordered graphs.  相似文献   

8.
A graph G is perfect in the sense of Berge if for every induced subgraph G′ of G, the chromatic number χ(G′) equals the largest number ω(G′) of pairwise adjacent vertices in G′. The Strong Perfect Graph Conjecture asserts that a graph G is perfect if, and only if, neither G nor its complement ? contains an odd chordless cycle of length at least five. We prove that the conjecture is true for a class of P5-free graphs.  相似文献   

9.
A graph G is perfect if for every induced subgraph H of G the chromatic number χ(H) equals the largest number ω(H) of pairwise adjacent vertices in H. Berge's famous Strong Perfect Graph Conjecture asserts that a graph G is perfect if and only if neither G nor its complement G¯ contains an odd chordless cycle of length at least 5. Its resolution has eluded researchers for more than 20 years. We prove that the conjecture is true for a class of graphs that we describe by forbidden configurations.  相似文献   

10.
In 1973, P. Erdös conjectured that for eachkε2, there exists a constantc k so that ifG is a graph onn vertices andG has no odd cycle with length less thanc k n 1/k , then the chromatic number ofG is at mostk+1. Constructions due to Lovász and Schriver show thatc k , if it exists, must be at least 1. In this paper we settle Erdös’ conjecture in the affirmative. We actually prove a stronger result which provides an upper bound on the chromatic number of a graph in which we have a bound on the chromatic number of subgraphs with small diameter.  相似文献   

11.
A set of vertices S resolves a connected graph G if every vertex is uniquely determined by its vector of distances to the vertices in S. The metric dimension of a graph G is the minimum cardinality of a resolving set. In this paper we undertake the metric dimension of infinite locally finite graphs, i.e., those infinite graphs such that all its vertices have finite degree. We give some necessary conditions for an infinite graph to have finite metric dimension and characterize infinite trees with finite metric dimension. We also establish some general results about the metric dimension of the Cartesian product of finite and infinite graphs, and obtain the metric dimension of the Cartesian product of several families of graphs.  相似文献   

12.
A graph is said to be k-variegated if its vertex set can be partitioned into k equal parts such that each vertex is adjacent to exactly one vertex from every other part not containing it. We prove that a graph G on 2n vertices is 2-variegated if and only if there exists a set S of n independent edges in G such that no cycle in G contains an odd number of edges from S. We also characterize 3-variegated graphs.  相似文献   

13.
The competition graph of a digraph D is a (simple undirected) graph which has the same vertex set as D and has an edge between x and y if and only if there exists a vertex v in D such that (x,v) and (y,v) are arcs of D. For any graph G, G together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. The competition number k(G) of G is the smallest number of such isolated vertices. In general, it is hard to compute the competition number k(G) for a graph G and it has been one of the important research problems in the study of competition graphs to characterize a graph by its competition number. Recently, the relationship between the competition number and the number of holes of a graph has been studied. A hole of a graph is a cycle of length at least 4 as an induced subgraph. In this paper, we conjecture that the dimension of the hole space of a graph is not smaller than the competition number of the graph. We verify this conjecture for various kinds of graphs and show that our conjectured inequality is indeed an equality for connected triangle-free graphs.  相似文献   

14.
Let N be a normal subgroup of a finite group G. We consider the graph Γ(G|N) whose vertices are the prime divisors of the degrees of the irreducible characters of G whose kernel does not contain N and two vertices are joined by an edge if the product of the two primes divides the degree of some of the characters of G whose kernel does not contain N. We prove that if Γ(G|N) is disconnected then G/N is solvable. This proves a strong form of a conjecture of Isaacs.  相似文献   

15.
Let D be an acyclic digraph. The competition graph of D is a graph which has the same vertex set as D and has an edge between u and v if and only if there exists a vertex x in D such that (u,x) and (v,x) are arcs of D. For any graph G, G together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. The competition number k(G) of G is the smallest number of such isolated vertices.A hole of a graph is an induced cycle of length at least four. Kim (2005) [8] conjectured that the competition number of a graph with h holes is at most h+1. Recently, Li and Chang (2009) [11] showed that the conjecture is true when the holes are independent. In this paper, we show that the conjecture is true though the holes are not independent but mutually edge-disjoint.  相似文献   

16.
Mkrtchyan, Petrosyan, and Vardanyan made the following conjecture: Every graph G with Δ(G)−δ(G)≤1 has a maximum matching whose unsaturated vertices do not have a common neighbor. We disprove this conjecture.  相似文献   

17.
We present an O(mn) algorithm to determine whether a graph G with m edges and n vertices has an odd cycle transversal of order at most k, for any fixed k. We also obtain an algorithm that determines, in the same time, whether a graph has a half integral packing of odd cycles of weight k.  相似文献   

18.
A set S of vertices of a graph G is a geodetic set if every vertex of G lies in at least one interval between the vertices of S. The size of a minimum geodetic set in G is the geodetic number of G. Upper bounds for the geodetic number of Cartesian product graphs are proved and for several classes exact values are obtained. It is proved that many metrically defined sets in Cartesian products have product structure and that the contour set of a Cartesian product is geodetic if and only if their projections are geodetic sets in factors.  相似文献   

19.
We conjecture an integral inequality for a product of functionsh(x i ,y j ) where the diagram of the product is a bipartite graphG. In particular, this inequality states that the random graph with fixed numbers of vertices and edges contains the asymptotically minimal number of copies ofG.  相似文献   

20.
A graph G is perfectly orderable, if it admits an order < on its vertices such that the sequential coloring algorithm delivers an optimum coloring on each induced subgraph (H, <) of (G, <). A graph is a threshold graph, if it contains no P4, 2K2, and C4 as induced subgraph. A theorem of Chvátal, Hoàng, Mahadev, and de Werra states that a graph is perfectly orderable, if it is the union of two threshold graphs. In this article, we investigate possible generalizations of the above theorem. Hoàng has conjectured that, if G is the union of two graphs G1 and G2, then G is perfectly orderable whenever G1 and G2 are both P4‐free and 2K2‐free. We show that the complement of the chordless cycle with at least five vertices cannot be a counter‐example to this conjecture, and we prove a special case of it: if G1 and G2 are two edge‐disjoint graphs that are P4‐free and 2K2‐free, then the union of G1 and G2 is perfectly orderable. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 32–43, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号