首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Let G be a multigraph with edge set E(G). An edge coloring C of G is called an edge covered coloring, if each color appears at least once at each vertex vV(G). The maximum positive integer k such that G has a k edge covered coloring is called the edge covered chromatic index of G and is denoted by . A graph G is said to be of class if and otherwise of class. A pair of vertices {u,v} is said to be critical if . A graph G is said to be edge covered critical if it is of class and every edge with vertices in V(G) not belonging to E(G) is critical. Some properties about edge covered critical graphs are considered.  相似文献   

2.
Hao Li  Jianping Li 《Discrete Mathematics》2008,308(19):4518-4529
Let G=(V,E) be a connected graph of order n, t a real number with t?1 and MV(G) with . In this paper, we study the problem of some long paths to maintain their one or two different endpoints in M. We obtain the following two results: (1) for any vertex vV(G), there exists a vertex uM and a path P with the two endpoints v and u to satisfy , , dG(u)+1-t}; (2) there exists either a cycle C to cover all vertices of M or a path P with two different endpoints u0 and up in M to satisfy , where .  相似文献   

3.
Let be the complement of the intersection graph G of a family of translations of a compact convex figure in Rn. When n=2, we show that , where γ(G) is the size of the minimum dominating set of G. The bound on is sharp. For higher dimension we show that , for n?3. We also study the chromatic number of the complement of the intersection graph of homothetic copies of a fixed convex body in Rn.  相似文献   

4.
A k-dimensional box is the cartesian product R1×R2×?×Rk where each Ri is a closed interval on the real line. The boxicity of a graph G, denoted as box(G), is the minimum integer k such that G is the intersection graph of a collection of k-dimensional boxes. A unit cube in k-dimensional space or a k-cube is defined as the cartesian product R1×R2×?×Rk where each Ri is a closed interval on the real line of the form [ai,ai+1]. The cubicity of G, denoted as cub(G), is the minimum k such that G is the intersection graph of a collection of k-cubes. In this paper we show that cub(G)≤t+⌈log(nt)⌉−1 and , where t is the cardinality of a minimum vertex cover of G and n is the number of vertices of G. We also show the tightness of these upper bounds.F.S. Roberts in his pioneering paper on boxicity and cubicity had shown that for a graph G, and , where n is the number of vertices of G, and these bounds are tight. We show that if G is a bipartite graph then and this bound is tight. We also show that if G is a bipartite graph then . We point out that there exist graphs of very high boxicity but with very low chromatic number. For example there exist bipartite (i.e., 2 colorable) graphs with boxicity equal to . Interestingly, if boxicity is very close to , then chromatic number also has to be very high. In particular, we show that if , s≥0, then , where χ(G) is the chromatic number of G.  相似文献   

5.
Daqing Yang 《Discrete Mathematics》2009,309(13):4614-4623
Let be a directed graph. A transitive fraternal augmentation of is a directed graph with the same vertex set, including all the arcs of and such that for any vertices x,y,z,
1.
if and then or (fraternity);
2.
if and then (transitivity).
In this paper, we explore some generalization of the transitive fraternal augmentations for directed graphs and its applications. In particular, we show that the 2-coloring number col2(G)≤O(1(G)0(G)2), where k(G) (k≥0) denotes the greatest reduced average density with depth k of a graph G; we give a constructive proof that k(G) bounds the distance (k+1)-coloring number colk+1(G) with a function f(k(G)). On the other hand, k(G)≤(col2k+1(G))2k+1. We also show that an inductive generalization of transitive fraternal augmentations can be used to study nonrepetitive colorings of graphs.  相似文献   

6.
A Roman domination function on a graph G=(V(G),E(G)) is a function f:V(G)→{0,1,2} satisfying the condition that every vertex u for which f(u)=0 is adjacent to at least one vertex v for which f(v)=2. The weight of a Roman dominating function is the value f(V(G))=∑uV(G)f(u). The minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G. Cockayne et al. [E. J. Cockayne et al. Roman domination in graphs, Discrete Mathematics 278 (2004) 11-22] showed that γ(G)≤γR(G)≤2γ(G) and defined a graph G to be Roman if γR(G)=2γ(G). In this article, the authors gave several classes of Roman graphs: P3k,P3k+2,C3k,C3k+2 for k≥1, Km,n for min{m,n}≠2, and any graph G with γ(G)=1; In this paper, we research on regular Roman graphs and prove that: (1) the circulant graphs and , n⁄≡1 (mod (2k+1)), (n≠2k) are Roman graphs, (2) the generalized Petersen graphs P(n,2k+1)( (mod 4) and ), P(n,1) (n⁄≡2 (mod 4)), P(n,3) ( (mod 4)) and P(11,3) are Roman graphs, and (3) the Cartesian product graphs are Roman graphs.  相似文献   

7.
Let G be a simple graph of order n. Let and , where a and b are two nonzero integers and m is a positive integer such that m is not a perfect square. We say that Ac=[cij] is the conjugate adjacency matrix of the graph G if cij=c for any two adjacent vertices i and j, for any two nonadjacent vertices i and j, and cij=0 if i=j. Let PG(λ)=|λI-A| and denote the characteristic polynomial and the conjugate characteristic polynomial of G, respectively. In this work we show that if then , where denotes the complement of G. In particular, we prove that if and only if PG(λ)=PH(λ) and . Further, let Pc(G) be the collection of conjugate characteristic polynomials of vertex-deleted subgraphs Gi=G?i(i=1,2,…,n). If Pc(G)=Pc(H) we prove that , provided that the order of G is greater than 2.  相似文献   

8.
A set S of vertices of a graph G=(V,E) with no isolated vertex is a total dominating set if every vertex of V(G) is adjacent to some vertex in S. The total domination numberγt(G) is the minimum cardinality of a total dominating set of G. The total domination subdivision numbersdγt(G) is the minimum number of edges that must be subdivided in order to increase the total domination number. We consider graphs of order n?4, minimum degree δ and maximum degree Δ. We prove that if each component of G and has order at least 3 and , then and if each component of G and has order at least 2 and at least one component of G and has order at least 3, then . We also give a result on stronger than a conjecture by Harary and Haynes.  相似文献   

9.
Let G be a graph and for any natural number r, denotes the minimum number of colors required for a proper edge coloring of G in which no two vertices with distance at most r are incident to edges colored with the same set of colors. In [Z. Zhang, L. Liu, J. Wang, Adjacent strong edge coloring of graphs, Appl. Math. Lett. 15 (2002) 623-626] it has been proved that for any tree T with at least three vertices, . Here we generalize this result and show that . Moreover, we show that if for any two vertices u and v with maximum degree d(u,v)?3, then . Also for any tree T with Δ(T)?3 we prove that . Finally, it is shown that for any graph G with no isolated edges, .  相似文献   

10.
A binary code with covering radius R is a subset C of the hypercube Qn={0,1}n such that every xQn is within Hamming distance R of some codeword cC, where R is as small as possible. For a fixed coordinate i∈[n], define to be the set of codewords with a b in the ith position. Then C is normal if there exists an i∈[n] such that for any vQn, the sum of the Hamming distances from v to and is at most 2R+1. We newly define what it means for an asymmetric covering code to be normal, and consider the worst-case asymptotic densities ν*(R) and of constant radius R symmetric and asymmetric normal covering codes, respectively. Using a probabilistic deletion method, and analysis adapted from previous work by Krivelevich, Sudakov, and Vu, we show that and , giving evidence that minimum size constant radius covering codes could still be normal.  相似文献   

11.
The bandwidth B(G) of a graph G is the minimum of the quantity max{|f(x)-f(y)|:xyE(G)} taken over all proper numberings f of G. The strong product of two graphs G and H, written as G(SP)H, is the graph with vertex set V(GV(H) and with (u1,v1) adjacent to (u2,v2) if one of the following holds: (a) u1 and v1 are adjacent to u2 and v2 in G and H, respectively, (b) u1 is adjacent to u2 in G and v1=v2, or (c) u1=u2 and v1 is adjacent to v2 in H. In this paper, we investigate the bandwidth of the strong product of two connected graphs. Let G be a connected graph. We denote the diameter of G by D(G). Let d be a positive integer and let x,y be two vertices of G. Let denote the set of vertices v so that the distance between x and v in G is at most d. We define δd(G) as the minimum value of over all vertices x of G. Let denote the set of vertices z such that the distance between x and z in G is at most d-1 and z is adjacent to y. We denote the larger of and by . We define η(G)=1 if G is complete and η(G) as the minimum of over all pair of vertices x,y of G otherwise. Let G and H be two connected graphs. Among other results, we prove that if δD(H)(G)?B(G)D(H)+1 and B(H)=⌈(|V(H)|+η(H)-2)/D(H)⌉, then B(G(SP)H)=B(G)|V(H)|+B(H). Moreover, we show that this result determines the bandwidth of the strong product of some classes of graphs. Furthermore, we study the bandwidth of the strong product of power of paths with complete bipartite graphs.  相似文献   

12.
Let k be a positive integer and G be a connected graph. This paper considers the relations among four graph theoretical parameters: the k-domination number γk(G), the connected k-domination number ; the k-independent domination number and the k-irredundance number irk(G). The authors prove that if an irk-set X is a k-independent set of G, then , and that for k?2, if irk(G)=1, if irk(G) is odd, and if irk(G) is even, which generalize some known results.  相似文献   

13.
For a graph G, its cubicity is the minimum dimension k such that G is representable as the intersection graph of (axis-parallel) cubes in k-dimensional space. (A k-dimensional cube is a Cartesian product R1×R2×?×Rk, where Ri is a closed interval of the form [ai,ai+1] on the real line.) Chandran et al. [L.S. Chandran, C. Mannino, G. Oriolo, On the cubicity of certain graphs, Information Processing Letters 94 (2005) 113-118] showed that for a d-dimensional hypercube Hd, . In this paper, we use the probabilistic method to show that . The parameter boxicity generalizes cubicity: the boxicity of a graph G is defined as the minimum dimension k such that G is representable as the intersection graph of axis-parallel boxes in k-dimensional space. Since for any graph G, our result implies that . The problem of determining a non-trivial lower bound for is left open.  相似文献   

14.
15.
For a connected graph G and any two vertices u and v in G, let D(u,v) denote the length of a longest u-v path in G. A hamiltonian coloring of a connected graph G of order n is an assignment c of colors (positive integers) to the vertices of G such that |c(u)−c(v)|+D(u,v)≥n−1 for every two distinct vertices u and v in G. The value of a hamiltonian coloring c is the maximum color assigned to a vertex of G. The hamiltonian chromatic number of G is taken over all hamiltonian colorings c of G. In this paper we discuss the hamiltonian chromatic number of graphs G with . As examples, we determine the hamiltonian chromatic number for a class of caterpillars, and double stars.  相似文献   

16.
The Ramsey number R(G) of a graph G is the least integer p such that for all bicolorings of the edges of the complete graph Kp, one of the monochromatic subgraphs contains a copy of G. We show that for any positive constant c and bipartite graph G=(U,V;E) of order n where the maximum degree of vertices in U is at most , . Moreover, we show that the Ramsey number of the cube Qn of dimension n satisfies . In both cases, the small terms are removed from the powers in the upper bounds of a earlier result of the author.  相似文献   

17.
Let G be a 4-connected graph, and let Ec(G) denote the set of 4-contractible edges of G and let denote the set of those edges of G which are not contained in a triangle. Under this notation, we show that if , then we have .  相似文献   

18.
A graph G is induced matching extendable (shortly, IM-extendable), if every induced matching of G is included in a perfect matching of G. A graph G is claw-free, if G does not contain any induced subgraph isomorphic to K1,3. The kth power of a graph G, denoted by Gk, is the graph with vertex set V(G) in which two vertices are adjacent if and only if the distance between them in G is at most k. In this paper, the 4-regular claw-free IM-extendable graphs are characterized. It is shown that the only 4-regular claw-free connected IM-extendable graphs are , and Tr, r?2, where Tr is the graph with 4r vertices ui,vi,xi,yi, 1?i?r, such that for each i with 1?i?r, {ui,vi,xi,yi} is a clique of Tr and . We also show that a 4-regular strongly IM-extendable graph must be claw-free. As a consequence, the only 4-regular strongly IM-extendable graphs are K4×K2, and .  相似文献   

19.
On edge domination numbers of graphs   总被引:1,自引:0,他引:1  
Let and be the signed edge domination number and signed star domination number of G, respectively. We prove that holds for all graphs G without isolated vertices, where n=|V(G)|?4 and m=|E(G)|, and pose some problems and conjectures.  相似文献   

20.
In this paper we show that if a square transversal design TDλ[k;u], say D(=(P,B)), admits a class semiregular automorphism group G of order s, then we have a by matrix M with entries from G∪{0} satisfying , where , if i=j, and , otherwise. As an application of (*), we show that any symmetric TD2[12;6] admits no nontrivial elation. We also obtain a result that gives us a restriction on the existence of elations of putative projective planes of composite order.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号