首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We prove the theorem from the title: the acyclic edge chromatic number of a random d‐regular graph is asymptotically almost surely equal to d + 1. This improves a result of Alon, Sudakov, and Zaks and presents further support for a conjecture that Δ(G) + 2 is the bound for the acyclic edge chromatic number of any graph G. It also represents an analog of a result of Robinson and the second author on edge chromatic number. © 2005 Wiley Periodicals, Inc. J Graph Theory 49: 69–74, 2005  相似文献   

2.
Let G be a finite d-regular graph with a proper edge coloring. An edge Kempe switch is a new proper edge coloring of G obtained by switching the two colors along some bichromatic cycle. We prove that any other edge coloring can be obtained by performing finitely many edge Kempe switches, provided that G is replaced with a suitable finite covering graph. The required covering degree is bounded above by a constant depending only on d.  相似文献   

3.
An edge-coloring of a graph G with integers is called an interval coloring if all colors are used, and the colors of edges incident to any vertex of G are distinct and form an interval of integers. It is known that not all graphs have interval colorings, and therefore it is expedient to consider a measure of closeness for a graph to be interval colorable. In this paper we introduce such a measure (resistance of a graph) and we determine the exact value of the resistance for some classes of graphs.  相似文献   

4.
In this note, we present some results concerning the chromatic index, the total chromatic index, the adjacent vertex distinguishing chromatic index and the adjacent vertex distinguishing total chromatic index for double graphs. In particular, we study the double graphs of class 1 and of type 1.  相似文献   

5.
For a graph G, the neighborhood complex N[G] is the simplicial complex having all subsets of vertices with a common neighbor as its faces. It is a well-known result of Lovász that if ‖N[G]‖ is k-connected, then the chromatic number of G is at least k+3.We prove that the connectivity of the neighborhood complex of a random graph is tightly concentrated, almost always between 1/2 and 2/3 of the expected clique number. We also show that the number of dimensions of nontrivial homology is almost always small, O(logd), compared to the expected dimension d of the complex itself.  相似文献   

6.
If k is a prime power, and G is a graph with n vertices, then a k‐coloring of G may be considered as a vector in $\mathbb{GF}$(k)n. We prove that the subspace of $\mathbb{GF}$(3)n spanned by all 3‐colorings of a planar triangle‐free graph with n vertices has dimension n. In particular, any such graph has at least n − 1 nonequivalent 3‐colorings, and the addition of any edge or any vertex of degree 3 results in a 3‐colorable graph. © 2000 John Wiley & Sons, Inc. J Graph Theory 34: 234–245, 2000  相似文献   

7.
Let R be a commutative ring. The total graph of R, denoted by T(Γ(R)) is a graph with all elements of R as vertices, and two distinct vertices x,yR, are adjacent if and only if x+yZ(R), where Z(R) denotes the set of zero-divisors of R. Let regular graph of R, Reg(Γ(R)), be the induced subgraph of T(Γ(R)) on the regular elements of R. Let R be a commutative Noetherian ring and Z(R) is not an ideal. In this paper we show that if T(Γ(R)) is a connected graph, then . Also, we prove that if R is a finite ring, then T(Γ(R)) is a Hamiltonian graph. Finally, we show that if S is a commutative Noetherian ring and Reg(S) is finite, then S is finite.  相似文献   

8.
Let R be a commutative ring, let Z(R) be the set of all zero-divisors of R and Reg(R) = R\Z(R). The regular graph of R, denoted by G(R), is a graph with all elements of Reg(R) as the vertices, and two distinct vertices x, y ∈ Reg(R) are adjacent if and only if x+yZ(R). In this paper we show that if R is a commutative Noetherian ring and 2 ∈ Z(R), then the chromatic number and the clique number of G(R) are the same and they are 2 n , where n is the minimum number of prime ideals whose union is Z(R). Also, we prove that all trees that can occur as the regular graph of a ring have at most two vertices.  相似文献   

9.
We analyze batch-scheduling problems that arise in connection with certain industrial applications. The models concern processing on a single max-batch machine with the additional feature that the tasks of the same batch have to be compatible. Compatibility is a symmetric binary relation—the compatible pairs are described with an undirected “compatibility graph”, which is often an interval graph according to some natural practical conditions that we present. We consider several models with varying batch capacities, processing times or compatibility graphs. We summarize known results, and present a min-max formula and polynomial time algorithms.  相似文献   

10.
Let G be a simple graph. The size of any largest matching in G is called the matching number of G and is denoted by ν(G). Define the deficiency of G, def(G), by the equation def(G)=|V(G)|−2ν(G). A set of points X in G is called an extreme set if def(GX)=def(G)+|X|. Let c0(G) denote the number of the odd components of G. A set of points X in G is called a barrier if c0(GX)=def(G)+|X|. In this paper, we obtain the following:

(1) Let G be a simple graph containing an independent set of size i, where i2. If X is extreme in G for every independent set X of size i in G, then there exists a perfect matching in G.

(2) Let G be a connected simple graph containing an independent set of size i, where i2. Then X is extreme in G for every independent set X of size i in G if and only if G=(U,W) is a bipartite graph with |U|=|W|i, and |Γ(Y)||U|−i+m+1 for any Y U, |Y|=m (1mi−1).

(3) Let G be a connected simple graph containing an independent set of size i, where i2. Then X is a barrier in G for every independent set X of size i in G if and only if G=(U,W) is a bipartite graph with |U|=|W|=i, and |Γ(Y)|m+1 for any Y U, |Y|=m (1mi−1).  相似文献   


11.
12.
《Discrete Mathematics》2022,345(11):113042
For a signed graph Σ=(G,σ), Zaslavsky defined a proper coloring on Σ and showed that the function counting the number of such colorings is a quasi-polynomial with period two, that is, a pair of polynomials, one for odd values and the other for even values. In this paper, we focus on the case of odd, written as χ(Σ,x) for short. We initially give a homomorphism expression of such colorings, by which the symmetry is considered in counting the number of homomorphisms. Besides, the explicit formulas χ(Σ,x) for some basic classes of signed graphs are presented. As a main result, we give a combinatorial interpretation of the coefficients in χ(Σ,x) and present several applications. In particular, the constant term in χ(Σ,x) gives a new criterion for balancing and a characterization for unbalanced unicyclic graph. At last, we also give a tight bound for the constant term of χ(Σ,x).  相似文献   

13.
The r‐acyclic edge chromatic number of a graph is defined to be the minimum number of colors required to produce an edge coloring of the graph such that adjacent edges receive different colors and every cycle C has at least min(|C|, r) colors. We show that (r ? 2)d is asymptotically almost surely (a.a.s.) an upper bound on the r‐acyclic edge chromatic number of a random d‐regular graph, for all constants r ≥ 4 and d ≥ 2. © 2006 Wiley Periodicals, Inc. J Graph Theory 53: 101–125, 2006  相似文献   

14.
We show new lower and upper bounds on the maximum number of maximal induced bipartite subgraphs of graphs with n vertices. We present an infinite family of graphs having 105n/10 ≈ 1.5926n; such subgraphs show an upper bound of O(12n/4) = O(1.8613n) and give an algorithm that finds all maximal induced bipartite subgraphs in time within a polynomial factor of this bound. This algorithm is used in the construction of algorithms for checking k‐colorability of a graph. © 2004 Wiley Periodicals, Inc. J Graph Theory 48: 127–132, 2005  相似文献   

15.
It is proved that a 4-connected, δ-regular graph G either is Hamiltonian, or has at least 3δ + 1 vertices and contains a cycle of length at least min{4δ - 4, 1/2 (|G| + 3δ - 2)}. Examples supplied by B. Jackson and H.A. Jung show that min{4δ - 4, 1/2(|G| + 3δ - 2)} cannot be replaced by 4δ + 1.  相似文献   

16.
The total chromatic number χT (G) of a graph G is the minimum number of colors needed to color the edges and the vertices of G so that incident or adjacent elements have distinct colors. We show that if G is a regular graph and d(G) 32 |V (G)| + 263 , where d(G) denotes the degree of a vertex in G, then χT (G) d(G) + 2.  相似文献   

17.
18.
In this paper, some results concerning the colorings of graph powers are presented. The notion of helical graphs is introduced. We show that such graphs are hom-universal with respect to high odd-girth graphs whose (2t+1)th power is bounded by a Kneser graph according to the homomorphism order. Also, we consider the problem of existence of homomorphism to odd cycles. We prove that such homomorphism to a (2k+1)-cycle exists if and only if the chromatic number of the (2k+1)th power of is less than or equal to 3, where is the 3-subdivision of G. We also consider Nešet?il’s Pentagon problem. This problem is about the existence of high girth cubic graphs which are not homomorphic to the cycle of size five. Several problems which are closely related to Nešet?il’s problem are introduced and their relations are presented.  相似文献   

19.
Let K1, K2,... be a sequence of regular graphs with degree v?2 such that n(Xi)→∞ and ck(Xi)/n(Xi)→0 as i∞ for each k?3, where n(Xi) is the order of Xi, and ck(Xi) is the number of k- cycles in X1. We determine the limiting probability density f(x) for the eigenvalues of X>i as i→∞. It turns out that
f(x)=v4(v?1)?v22π(v2?x2)0
for ?x??2v-1, otherwise It is further shown that f(x) is the expected eigenvalue distribution for every large randomly chosen labeled regular graph with degree v.  相似文献   

20.
The chromatic capacityχcap(G) of a graph G is the largest k for which there exists a k-coloring of the edges of G such that, for every coloring of the vertices of G with the same colors, some edge is colored the same as both its vertices. We prove that there is an unbounded function f:NN such that χcap(G)?f(χ(G)) for almost every graph G, where χ denotes the chromatic number. We show that for any positive integers n and k with k?n/2 there exists a graph G with χ(G)=n and χcap(G)=n-k, extending a result of Greene. We obtain bounds on that are tight as r→∞, where is the complete n-partite graph with r vertices in each part. Finally, for any positive integers p and q we construct a graph G with χcap(G)+1=χ(G)=p that contains no odd cycles of length less than q.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号