首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let χf denote the fractional chromatic number and ρ the Hall ratio, and let the lexicographic product of G and H be denoted GlexH. Main results: (i) ρ(GlexH)≤χf(G)ρ(H); (ii) if ρ(G)=χf(G) then ρ(GlexH)=ρ(G)ρ(H) for all H; (iii) χfρ is unbounded. In addition, the question of how big χf/ρ can be is discussed.  相似文献   

2.
Ko-Wei Lih 《Discrete Mathematics》2008,308(20):4653-4659
A graph is said to be a cover graph if it is the underlying graph of the Hasse diagram of a finite partially ordered set. We prove that the generalized Mycielski graphs Mm(C2t+1) of an odd cycle, Kneser graphs KG(n,k), and Schrijver graphs SG(n,k) are not cover graphs when m?0,t?1, k?1, and n?2k+2. These results have consequences in circular chromatic number.  相似文献   

3.
For graphs G and H, let GH denote their Cartesian sum. We investigate the chromatic number and the circular chromatic number for GH. It has been proved that for any graphs G and H, . It has been conjectured that for any graphs G and H, . We confirm this conjecture for graphs G and H with special values of χc(G) and χc(H). These results improve previously known bounds on the corresponding coloring parameters for the Cartesian sum of graphs.  相似文献   

4.
如果图G的一个正常边染色满足相邻点的色集不同,且任意两种颜色所染边数目相差不超过1,则称为均匀邻强边染色,其所用最少染色数称为均匀邻强边色数.本文得到了路、圈、星和扇的Mycielski图的均匀邻强边色数.  相似文献   

5.
刘红美 《数学杂志》2006,26(6):602-608
通过引进Mycielski图点集的一类特殊划分,利用该划分在Mycielski图循环着色中的特点改进了如下猜想:完全图的Mycielski图的循环色数等于它的点色数.  相似文献   

6.
    
For a general graph G, M(G) denotes its Mycielski graph. This article gives a number of new sufficient conditions for G to have the circular chromatic number Xc(M(G)) equals to the chromatic number X(M(G)), which have improved some best sufficient conditions published up to date.  相似文献   

7.
李琼  卜月华 《数学研究》2006,39(4):401-409
对于图G(V,E)的正常k-全染色φ称为G(V,E)的k-均匀全染色,当且仅当任意两个色类中的元素总数至多相差1.xvee(G)=m in{k存在图G的一个k-均匀全染色}称为G的均匀全色数.本文得到了两类M ycielsk i图及圈,轮图和扇形的均匀全色数.  相似文献   

8.
张丽  陈东灵  陈学刚 《数学进展》2006,35(2):171-177
本文证明了对n阶图G,若其最大度△(G)的2倍不等于n,且G的关联色数等于△(G) 1,则M(G)的关联色数为△(M(G)) 1.同时还研究了树和完全二部图的Mycielski图的关联色数.文末提出了M(G)的关联色数猜想,其中M(G)为图G的Mycielski图.  相似文献   

9.
对|V(G)|≥3的连通图G,若κ-正常边染色法满足相邻点的色集合不相同,则称该染色法为κ-邻强边染色,其最小的κ称为图G的邻强边色数。张忠辅等学者猜想:对|V(G)|≥3的连通图G,G≠C_5其邻强边色数至多为△(G)+2,利用组合分析的方法给出了完全图的广义Mycielski图的邻强边色数,从而验证了图的邻强边染色猜想对于此类图成立。  相似文献   

10.
Let D be a set of positive integers. The distance graph G(Z,D) with distance set D is the graph with vertex set Z in which two vertices x,y are adjacent if and only if |xy|D. The fractional chromatic number, the chromatic number, and the circular chromatic number of G(Z,D) for various D have been extensively studied recently. In this paper, we investigate the fractional chromatic number, the chromatic number, and the circular chromatic number of the distance graphs with the distance sets of the form Dm,[k,k]={1,2,…,m}−{k,k+1,…,k}, where m, k, and k are natural numbers with mkk. In particular, we completely determine the chromatic number of G(Z,Dm,[2,k]) for arbitrary m, and k.  相似文献   

11.
The distinguishing chromatic number of a graph G, denoted χD(G), is defined as the minimum number of colors needed to properly color G such that no non-trivial automorphism of G fixes each color class of G. In this paper, we consider random Cayley graphs Γ defined over certain abelian groups A with |A|=n, and show that with probability at least 1?n?Ω(logn), χD(Γ)χ(Γ)+1.  相似文献   

12.
Reed conjectured that for every ?>0 and Δ there exists g such that the fractional total chromatic number of a graph with maximum degree Δ and girth at least g is at most Δ+1+?. We prove the conjecture for Δ=3 and for even Δ?4 in the following stronger form: For each of these values of Δ, there exists g such that the fractional total chromatic number of any graph with maximum degree Δ and girth at least g is equal to Δ+1.  相似文献   

13.
A local coloring of a graph G is a function c:V(G)→N having the property that for each set SV(G) with 2≤|S|≤3, there exist vertices u,vS such that |c(u)−c(v)|≥mS, where mS is the number of edges of the induced subgraph 〈S〉. The maximum color assigned by a local coloring c to a vertex of G is called the value of c and is denoted by χ?(c). The local chromatic number of G is χ?(G)=min{χ?(c)}, where the minimum is taken over all local colorings c of G. The local coloring of graphs was introduced by Chartrand et al. [G. Chartrand, E. Salehi, P. Zhang, On local colorings of graphs, Congressus Numerantium 163 (2003) 207-221]. In this paper the local coloring of Kneser graphs is studied and the local chromatic number of the Kneser graph K(n,k) for some values of n and k is determined.  相似文献   

14.
In a triangle-free graph, the neighbourhood of every vertex is an independent set. We investigate the class S of triangle-free graphs where the neighbourhoods of vertices are maximum independent sets. Such a graph G must be regular of degree d=α(G) and the fractional chromatic number must satisfy χf(G)=|G|/α(G). We indicate that S is a rich family of graphs by determining the rational numbers c for which there is a graph GS with χf(G)=c except for a small gap, where we cannot prove the full statement. The statements for c≥3 are obtained by using, modifying, and re-analysing constructions of Sidorenko, Mycielski, and Bauer, van den Heuvel and Schmeichel, while the case c<3 is settled by a recent result of Brandt and Thomassé. We will also investigate the relation between other parameters of certain graphs in S like chromatic number and toughness.  相似文献   

15.
In a circular r-colouring game on G, Alice and Bob take turns colouring the vertices of G with colours from the circle S(r) of perimeter r. Colours assigned to adjacent vertices need to have distance at least 1 in S(r). Alice wins the game if all vertices are coloured, and Bob wins the game if some uncoloured vertices have no legal colour. The circular game chromatic number χcg(G) of G is the infimum of those real numbers r for which Alice has a winning strategy in the circular r-colouring game on G. This paper proves that for any graph G, , where is the game colouring number of G. This upper bound is shown to be sharp for forests. It is also shown that for any graph G, χcg(G)≤2χa(G)(χa(G)+1), where χa(G) is the acyclic chromatic number of G. We also determine the exact value of the circular game chromatic number of some special graphs, including complete graphs, paths, and cycles.  相似文献   

16.
    
For a graph G and a tree‐decomposition of G, the chromatic number of is the maximum of , taken over all bags . The tree‐chromatic number of G is the minimum chromatic number of all tree‐decompositions of G. The path‐chromatic number of G is defined analogously. In this article, we introduce an operation that always increases the path‐chromatic number of a graph. As an easy corollary of our construction, we obtain an infinite family of graphs whose path‐chromatic number and tree‐chromatic number are different. This settles a question of Seymour (J Combin Theory Ser B 116 (2016), 229–237). Our results also imply that the path‐chromatic numbers of the Mycielski graphs are unbounded.  相似文献   

17.
Mycielski图的循环色数   总被引:1,自引:0,他引:1  
刘红美 《数学杂志》2006,26(3):255-260
通过引入一类点集划分的概念,研究了Mylielski图循环染色的性质,证明了当完全图的点数足够大时,它的Mycielski图的循环色数与其点色数相等.  相似文献   

18.
Let γ(G) and ir(G) denote the domination number and the irredundance number of a graph G, respectively. Allan and Laskar [Proc. 9th Southeast Conf. on Combin., Graph Theory & Comp. (1978) 43–56] and Bollobás and Cockayne [J. Graph Theory (1979) 241–249] proved independently that γ(G) < 2ir(G) for any graph G. For a tree T, Damaschke [Discrete Math. (1991) 101–104] obtained the sharper estimation 2γ(T) < 3ir(T). Extending Damaschke's result, Volkmann [Discrete Math. (1998) 221–228] proved that 2γ(G) ≤ 3ir(G) for any block graph G and for any graph G with cyclomatic number μ(G) ≤ 2. Volkmann also conjectured that 5γ(G) < 8ir(G) for any cactus graph. In this article we show that if G is a block-cactus graph having π(G) induced cycles of length 2 (mod 4), then γ(G)(5π(G) + 4) ≤ ir(G)(8π(G) + 6). This result implies the inequality 5γ(G) < 8ir(G) for a block-cactus graph G, thus proving the above conjecture. © 1998 John Wiley & Sons, Inc. J. Graph Theory 29: 139–149, 1998  相似文献   

19.
The total chromatic number χT(G) of a graph G is the minimum number of colors needed to color the elements (vertices and edges) of G such that no adjacent or incident pair of elements receive the same color. G is called Type 1 if χT(G)=Δ(G)+1. In this paper we prove that the join of a complete inequibipartite graph Kn1,n2 and a path Pm is of Type 1.  相似文献   

20.
The total chromatic number χT(G) of a graph G is the least number of colors needed to color the vertices and the edges of G such that no adjacent or incident elements receive the same color. The Total Coloring Conjecture(TCC) states that for every simple graph G, χT(G)≤Δ(G)+2. In this paper, we show that χT(G)=Δ(G)+1 for all pseudo-Halin graphs with Δ(G)=4 and 5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号