首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
If x is a vertex of a digraph D, then we denote by d +(x) and d (x) the outdegree and the indegree of x, respectively. A digraph D is called regular, if there is a number p ∈ ℕ such that d +(x) = d (x) = p for all vertices x of D. A c-partite tournament is an orientation of a complete c-partite graph. There are many results about directed cycles of a given length or of directed cycles with vertices from a given number of partite sets. The idea is now to combine the two properties. In this article, we examine in particular, whether c-partite tournaments with r vertices in each partite set contain a cycle with exactly r − 1 vertices of every partite set. In 1982, Beineke and Little [2] solved this problem for the regular case if c = 2. If c ⩾ 3, then we will show that a regular c-partite tournament with r ⩾ 2 vertices in each partite set contains a cycle with exactly r − 1 vertices from each partite set, with the exception of the case that c = 4 and r = 2.  相似文献   

2.
The vertex set of a digraph D is denoted by V(D). A c-partite tournament is an orientation of a complete c-partite graph. In 1991, Jian-zhong Wang conjectured that every arc of a regular 3-partite tournament D is contained in directed cycles of all lengths 3,6,9,…,|V(D)|. This conjecture is not valid, because for each integer t with 3?t?|V(D)|, there exists an infinite family of regular 3-partite tournaments D such that at least one arc of D is not contained in a directed cycle of length t.In this paper, we prove that every arc of a regular 3-partite tournament with at least nine vertices is contained in a directed cycle of length m, m+1, or m+2 for 3?m?5, and we conjecture that every arc of a regular 3-partite tournament is contained in a directed cycle of length m, (m+1), or (m+2) for each m∈{3,4,…,|V(D)|-2}.It is known that every regular 3-partite tournament D with at least six vertices contains directed cycles of lengths 3, |V(D)|-3, and |V(D)|. We show that every regular 3-partite tournament D with at least six vertices also has a directed cycle of length 6, and we conjecture that each such 3-partite tournament contains cycles of all lengths 3,6,9,…,|V(D)|.  相似文献   

3.
The vertex set of a digraph D is denoted by V(D). A c-partite tournament is an orientation of a complete c-partite graph.In 1999, Yeo conjectured that each regular c-partite tournament D with c≥4 and |V(D)|≥10 contains a pair of vertex disjoint directed cycles of lengths 5 and |V(D)|−5. In this paper we shall confirm this conjecture using a computer program for some cases.  相似文献   

4.
An n-partite tournament is an orientation of a complete n-partite graph. In this paper, we give three supplements to Reid’s theorem [K.B. Reid, Two complementary circuits in two-connected tournaments, Ann. Discrete Math. 27 (1985) 321-334] in multipartite tournaments. The first one is concerned with the lengths of cycles and states as follows: let D be an (α(D)+1)-strong n-partite tournament with n≥6, where α(D) is the independence number of D, then D contains two disjoint cycles of lengths 3 and n−3, respectively, unless D is isomorphic to the 7-tournament containing no transitive 4-subtournament (denoted by ). The second one is obtained by considering the number of partite sets that cycles pass through: every (α(D)+1)-strong n-partite tournament D with n≥6 contains two disjoint cycles which contain vertices from exactly 3 and n−3 partite sets, respectively, unless it is isomorphic to . The last one is about two disjoint cycles passing through all partite sets.  相似文献   

5.
If D is a digraph, then we denote by V(D) its vertex set. A multipartite or c-partite tournament is an orientation of a complete c-partite graph. The global irregularity of a digraph D is defined by
  相似文献   

6.
A multipartite or c-partite tournament is an orientation of a complete c-partite graph. In this survey we mainly describe results on directed cycles and paths in strongly connected c-partite tournaments for c?3. In addition, we include about 40 open problems and conjectures.  相似文献   

7.
An n-partite tournament is an orientation of a complete n-partite graph. An n-partite tournament is a tournament, if it contains exactly one vertex in each partite set. Douglas, Proc. London Math. Soc. 21 (1970) 716–730, obtained a characterization of strongly connected tournaments with exactly one Hamilton cycle (i.e., n-cycle). For n≥3, we characterize strongly connected n-partite tournaments that are not tournaments with exactly one n-cycle. For n≥5, we enumerate such non-isomorphic n-partite tournaments.  相似文献   

8.
A multipartite tournament is an orientation of a complete multipartite graph. A tournament is a multipartite tournament, each partite set of which contains exactly one vertex. Alspach (Canad. Math. Bull. 10 (1967) 283) proved that every regular tournament is arc-pancyclic. Although all partite sets of a regular multipartite tournament have the same cardinality, Alspach's theorem is not valid for regular multipartite tournaments. In this paper, we prove that if the cardinality common to all partite sets of a regular n-partite (n3) tournament T is odd, then every arc of T is in a cycle that contains vertices from exactly m partite sets for all m{3,4,…,n}. This result extends Alspach's theorem for regular tournaments to regular multipartite tournaments. We also examine the structure of cycles through arcs in regular multipartite tournaments.  相似文献   

9.
A digraph D is cycle-connected if for every pair of vertices u,vV(D) there exists a directed cycle in D containing both u and v. In 1999, Ádám [A. Ádám, On some cyclic connectivity properties of directed graphs, Acta Cybernet. 14 (1) (1999) 1-12] posed the following problem. Let D be a cycle-connected digraph. Does there exist a universal arc in D, i.e., an arc eA(D) such that for every vertex wV(D) there is a directed cycle in D containing both e and w?A c-partite or multipartite tournament is an orientation of a complete c-partite graph. Recently, Hubenko [A. Hubenko, On a cyclic connectivity property of directed graphs, Discrete Math. 308 (2008) 1018-1024] proved that each cycle-connected bipartite tournament has a universal arc. As an extension of this result, we show in this note that each cycle-connected multipartite tournament has a universal arc.  相似文献   

10.
B.P. Tan 《Discrete Mathematics》2006,306(21):2702-2710
Koh and Tan gave a sufficient condition for a 3-partite tournament to have at least one 3-king in [K.M. Koh, B.P. Tan, Kings in multipartite tournaments, Discrete Math. 147 (1995) 171-183, Theorem 2]. In Theorem 1 of this paper, we extend this result to n-partite tournaments, where n?3. In [K.M. Koh, B.P. Tan, Number of 4-kings in bipartite tournaments with no 3-kings, Discrete Math. 154 (1996) 281-287, K.M. Koh, B.P. Tan, The number of kings in a multipartite tournament, Discrete Math. 167/168 (1997) 411-418] Koh and Tan showed that in any n-partite tournament with no transmitters and 3-kings, where n?2, the number of 4-kings is at least eight, and completely characterized all n-partite tournaments having exactly eight 4-kings and no 3-kings. Using Theorem 1, we strengthen substantially the above result for n?3. Motivated by the strengthened result, we further show that in any n-partite tournament T with no transmitters and 3-kings, where n?3, if there are r partite sets of T which contain 4-kings, where 3?r?n, then the number of 4-kings in T is at least r+8. An example is given to justify that the lower bound is sharp.  相似文献   

11.
A digraph obtained by replacing each edge of a complete p‐partite graph by an arc or a pair of mutually opposite arcs with the same end vertices is called a semicomplete p‐partite digraph, or just a semicomplete multipartite digraph. A semicomplete multipartite digraph with no cycle of length two is a multipartite tournament. In a digraph D, an r‐king is a vertex q such that every vertex in D can be reached from q by a path of length at most r. Strengthening a theorem by K. M. Koh and B. P. Tan (Discr Math 147 (1995), 171–183) on the number of 4‐kings in multipartite tournaments, we characterize semicomplete multipartite digraphs, which have exactly k 4‐kings for every k = 1, 2, 3, 4, 5. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 177‐183, 2000  相似文献   

12.
In this paper we prove that if T is a regular n-partite tournament with n≥4, then each arc of T lies on a cycle whose vertices are from exactly κ partite sets for κ=4,5,…,n. Our result, in a sense, generalizes a theorem due to Alspach.  相似文献   

13.
1. IntroductionThroughout the paPer, we use the terminology and notation of [1] and [2]. Let D =(V(D), A(D)) be a digraPh. If xy is an arc of a digraPh D, then we say that x dominatesy, denoted by x - y. More generally, if A and B are two disjoint vertex sets of D such thatevery vertex of A dominates every vertex of B, then we say that A dominates B, denotedby A - B. The outset N (x) of a vertex x is the set of vertices dominated by x in D,and the inset N--(x) is the set of vertices d…  相似文献   

14.
A digraph without loops, multiple arcs and directed cycles of length two is called a local tournament if the set of in-neighbors as well as the set of out-neighbors of every vertex induces a tournament. A vertex of a strongly connected digraph is called a non-separating vertex if its removal preserves the strong connectivity of the digraph in question.In 1990, Bang-Jensen showed that a strongly connected local tournament does not have any non-separating vertices if and only if it is a directed cycle. Guo and Volkmann extended this result in 1994. They determined the strongly connected local tournament with exactly one non-separating vertex. In the first part of this paper we characterize the class of strongly connected local tournaments with exactly two non-separating vertices.In the second part of the paper we consider the following problem: Given a strongly connected local tournament D of order n with at least n+2 arcs and an integer 3≤rn. How many directed cycles of length r exist in D? For tournaments this problem was treated by Moon in 1966 and Las Vergnas in 1975. A reformulation of the results of the first part shows that we have characterized the class of strongly connected local tournaments with exactly two directed cycles of length n−1. Among other things we show that D has at least nr+1 directed cycles of length r for 4≤rn−1 unless it has a special structure. Moreover, we characterize the class of local tournaments with exactly nr+1 directed cycles of length r for 4≤rn−1 which generalizes a result of Las Vergnas.  相似文献   

15.
We call the digraph D an orientation of a graph G if D is obtained from G by the orientation of each edge of G in exactly one of the two possible directions. The digraph D is an m-coloured digraph if the arcs of D are coloured with m-colours.Let D be an m-coloured digraph. A directed path (or a directed cycle) is called monochromatic if all of its arcs are coloured alike.A set NV(D) is said to be a kernel by monochromatic paths if it satisfies the two following conditions: (i) for every pair of different vertices u,vN there is no monochromatic directed path between them and (ii) for every vertex xV(D)-N there is a vertex yN such that there is an xy-monochromatic directed path.In this paper we obtain sufficient conditions for an m-coloured orientation of a graph obtained from Kn by deletion of the arcs of K1,r(0?r?n-1) to have a kernel by monochromatic.  相似文献   

16.
A digraph D is arc-traceable if for every arc xy of D, the arc xy belongs to a directed Hamiltonian path of D. A local tournament is an oriented graph such that the negative neighborhood as well as the positive neighborhood of every vertex induces a tournament. It is well known that every tournament contains a directed Hamiltonian path and, in 1990, Bang-Jensen showed the same for connected local tournaments. In 2006, Busch, Jacobson and Reid studied the structure of tournaments that are not arc-traceable and consequently gave various sufficient conditions for tournaments to be arc-traceable. Inspired by the article of Busch, Jacobson and Reid, we develop in this paper the structure necessary for a local tournament to be not arc-traceable. Using this structure, we give sufficient conditions for a local tournament to be arc-traceable and we present examples showing that these conditions are best possible.  相似文献   

17.
The vertex set of a digraph D is denoted by V(D). A c-partite tournament is an orientation of a complete c-partite graph. Let V 1, V 2, . . . ,V c be the partite sets of D. If there exist two vertex disjoint cycles C and C′ in D such that Vi?(V(CV(C¢)) 1 ?{V_{\mathrm{i}}\cap(V(C)\cup V(C'))\neq\emptyset} for all i = 1, 2, . . . , c, then D is weakly cycle complementary. In 2008, Volkmann and Winzen gave the above definition of weakly complementary cycles and proved that all 3-connected c-partite tournaments with c ≥ 3 are weakly cycle complementary. In this paper, we characterize multipartite tournaments are weakly cycle complementary. Especially, we show that all 2-connected 3-partite tournaments that are weakly cycle complementary, unless D is isomorphic to D 3,2, D 3,2,2 or D 3,3,1.  相似文献   

18.
In this article, we give the maximum number of arc-disjoint arborescences in a tournament or an oriented complete r-partite graph by means of the indegrees of its vertices.  相似文献   

19.
Extendable Cycles in Multipartite Tournaments   总被引:1,自引:0,他引:1  
An n-partite tournament is an orientation of a complete n-partite graph. If D is a strongly connected n-partite (n3) tournament, then we shall prove that every partite set of D has at least one vertex which lies on a cycle Cm of each length m for such that V(C3)V(C4)V(Cn), where V(Cm) is the vertex set of Cm for . This result extends those of Bondy [2], Guo and Volkmann [4], Gutin [6], Moon [8], and Yeo [12].Final version received: June 9, 2003  相似文献   

20.
Jun-Jie Pan 《Discrete Mathematics》2006,306(17):2091-2096
An isometric path between two vertices in a graph G is a shortest path joining them. The isometric path number of G, denoted by ip(G), is the minimum number of isometric paths needed to cover all vertices of G. In this paper, we determine exact values of isometric path numbers of complete r-partite graphs and Cartesian products of 2 or 3 complete graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号