首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let G be a graph with a nonempty edge set, we denote the rank of the adjacency matrix of G and the term rank of G, by rk(G) and Rk(G), respectively. It was conjectured [C. van Nuffelen, Amer. Math. Monthly 83 (1976) 265–266], for any graph G, χ(G)?rk(G). The first counterexample to this conjecture was obtained by Alon and Seymour [J. Graph Theor. 13 (1989) 523–525]. Recently, Fishkind and Kotlov [Discrete Math. 250 (2002) 253–257] have proved that for any graph G, χ(G)?Rk(G). In this Note we improve Fishkind–Kotlov upper bound and show that χ(G)?rk(G)+Rk(G)2. To cite this article: S. Akbari, H.-R. Fanaï, C. R. Acad. Sci. Paris, Ser. I 340 (2005).  相似文献   

2.
Let G be a graph and χl(G) denote the list chromatic number of G. In this paper we prove that for every graph G for which the length of each cycle is divisible by l (l≥3), χl(G)≤3.  相似文献   

3.
A subset S of the vertex set of a graph G is called acyclic if the subgraph it induces in G contains no cycles. S is called an acyclic dominating set of G if it is both acyclic and dominating. The minimum cardinality of an acyclic dominating set, denoted by γa(G), is called the acyclic domination number of G. Hedetniemi et al. [Acyclic domination, Discrete Math. 222 (2000) 151-165] introduced the concept of acyclic domination and posed the following open problem: if δ(G) is the minimum degree of G, is γa(G)?δ(G) for any graph whose diameter is two? In this paper, we provide a negative answer to this question by showing that for any positive k, there is a graph G with diameter two such that γa(G)-δ(G)?k.  相似文献   

4.
Brooks' Theorem says that if for a graph G,Δ(G)=n, then G is n-colourable, unless (1) n=2 and G has an odd cycle as a component, or (2) n>2 and Kn+1 is a component of G. In this paper we prove that if a graph G has none of some three graphs (K1,3;K5?e and H) as an induced subgraph and if Δ(G)?6 and d(G)<Δ(G), then χ(G)<Δ(G). Also we give examples to show that the hypothesis Δ(G)?6 can not be non-trivially relaxed and the graph K5?e can not be removed from the hypothesis. Moreover, for a graph G with none of K1,3;K5?e and H as an induced subgraph, we verify Borodin and Kostochka's conjecture that if for a graph G,Δ(G)?9 and d(G)<Δ(G), then χ(G)<Δ(G).  相似文献   

5.
Let G=(V,E) be a graph with V={1,2,…,n}. Define S(G) as the set of all n×n real-valued symmetric matrices A=[aij] with aij≠0,ij if and only if ijE. By M(G) we denote the largest possible nullity of any matrix AS(G). The path cover number of a graph G, denoted P(G), is the minimum number of vertex disjoint paths occurring as induced subgraphs of G which cover all the vertices of G.There has been some success with relating the path cover number of a graph to its maximum nullity. Johnson and Duarte [5], have shown that for a tree T,M(T)=P(T). Barioli et al. [2], show that for a unicyclic graph G,M(G)=P(G) or M(G)=P(G)-1. Notice that both families of graphs are outerplanar. We show that for any outerplanar graph G,M(G)?P(G). Further we show that for any partial 2-path G,M(G)=P(G).  相似文献   

6.
A well-established generalization of graph coloring is the concept of list coloring. In this setting, each vertex v of a graph G is assigned a list L(v) of k colors and the goal is to find a proper coloring c of G with c(v)∈L(v). The smallest integer k for which such a coloring c exists for every choice of lists is called the list chromatic number of G and denoted by χl(G).We study list colorings of Cartesian products of graphs. We show that unlike in the case of ordinary colorings, the list chromatic number of the product of two graphs G and H is not bounded by the maximum of χl(G) and χl(H). On the other hand, we prove that χl(G×H)?min{χl(G)+col(H),col(G)+χl(H)}-1 and construct examples of graphs G and H for which our bound is tight.  相似文献   

7.
The total chromatic number χT(G) of a graph G is the least number of colors needed to color the vertices and the edges of G such that no adjacent or incident elements receive the same color. The Total Coloring Conjecture(TCC) states that for every simple graph G, χT(G)≤Δ(G)+2. In this paper, we show that χT(G)=Δ(G)+1 for all pseudo-Halin graphs with Δ(G)=4 and 5.  相似文献   

8.
Given a graph G, a total k-coloring of G is a simultaneous coloring of the vertices and edges of G with k colors. Denote χve (G) the total chromatic number of G, and c(Σ) the Euler characteristic of a surfase Σ. In this paper, we prove that for any simple graph G which can be embedded in a surface Σ with Euler characteristic c(Σ), χve (G) = Δ (G) + 1 if c(Σ) > 0 and Δ (G) ≥ 13, or, if c(Σ) = 0 and Δ (G) ≥ 14. This result generalizes results in [3], [4], [5] by Borodin.  相似文献   

9.
一类连通无三角形图线图的共色数的下界   总被引:4,自引:0,他引:4  
Erd(o)s,Gimbel and Straight (1990) conjectured that if ω(G)<5 and z(G)>3,then z(G)≥χ(G)-2. But by using the concept of edge cochromatic number it is proved that if G is the line graph of a connected triangle-free graph with ω(G)<5 and G≠K4, then z(G)≥χ(G)-2.  相似文献   

10.
This paper deals with b-colorings of a graph G, that is, proper colorings in which for each color c, there exists at least one vertex colored by c such that its neighbors are colored by each other color. The b-chromatic numberb(G) of a graph G is the maximum number of colors for which G has a b-coloring. It is easy to see that every graph G has a b-coloring using χ(G) colors.We say that G is b-continuous iff for each k, χ(G)?k?b(G), there exists a b-coloring with k colors. It is well known that not all graphs are b-continuous. We call b-spectrumSb(G) of G to be the set of integers k for which there is a b-coloring of G by k colors. We show that for any finite integer set I, there exists a graph whose b-spectrum is I and we investigate the complexity of the problem of deciding whether a graph G is b-continuous, even if b-colorings using χ(G) and b(G) colors are given.  相似文献   

11.
In a circular r-colouring game on G, Alice and Bob take turns colouring the vertices of G with colours from the circle S(r) of perimeter r. Colours assigned to adjacent vertices need to have distance at least 1 in S(r). Alice wins the game if all vertices are coloured, and Bob wins the game if some uncoloured vertices have no legal colour. The circular game chromatic number χcg(G) of G is the infimum of those real numbers r for which Alice has a winning strategy in the circular r-colouring game on G. This paper proves that for any graph G, , where is the game colouring number of G. This upper bound is shown to be sharp for forests. It is also shown that for any graph G, χcg(G)≤2χa(G)(χa(G)+1), where χa(G) is the acyclic chromatic number of G. We also determine the exact value of the circular game chromatic number of some special graphs, including complete graphs, paths, and cycles.  相似文献   

12.
Given a graph G, by a Grundy k-coloring of G we mean any proper k-vertex coloring of G such that for each two colors i and j, i<j, every vertex of G colored by j has a neighbor with color i. The maximum k for which there exists a Grundy k-coloring is denoted by Γ(G) and called Grundy (chromatic) number of G. We first discuss the fixed-parameter complexity of determining Γ(G)?k, for any fixed integer k and show that it is a polynomial time problem. But in general, Grundy number is an NP-complete problem. We show that it is NP-complete even for the complement of bipartite graphs and describe the Grundy number of these graphs in terms of the minimum edge dominating number of their complements. Next we obtain some additive Nordhaus-Gaddum-type inequalities concerning Γ(G) and Γ(Gc), for a few family of graphs. We introduce well-colored graphs, which are graphs G for which applying every greedy coloring results in a coloring of G with χ(G) colors. Equivalently G is well colored if Γ(G)=χ(G). We prove that the recognition problem of well-colored graphs is a coNP-complete problem.  相似文献   

13.
In a graph G, a vertex dominates itself and its neighbors. A subset SV(G) is a double dominating set of G if S dominates every vertex of G at least twice. The double domination numberdd(G) is the minimum cardinality of a double dominating set of G. The double domination subdivision numbersddd(G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the double domination number. In this paper first we establish upper bounds on the double domination subdivision number for arbitrary graphs in terms of vertex degree. Then we present several different conditions on G which are sufficient to imply that sddd(G)?3. We also prove that 1?sddd(T)?2 for every tree T, and characterize the trees T for which sddd(T)=2.  相似文献   

14.
When we wish to compute lower bounds for the chromatic number χ(G) of a graph G, it is of interest to know something about the ‘chromatic forcing number’ fχ(G), which is defined to be the least number of vertices in a subgraph H of G such that χ(H) = χ(G). We show here that for random graphs Gn,p with n vertices, fχ(Gn,p) is almost surely at least (12?ε)n, despite say the fact that the largest complete subgraph of Gn,p has only about log n vertices.  相似文献   

15.
The total chromatic number χT(G) of a graph G is the minimum number of colors needed to color the elements (vertices and edges) of G such that no adjacent or incident pair of elements receive the same color. G is called Type 1 if χT(G)=Δ(G)+1. In this paper we prove that the join of a complete inequibipartite graph Kn1,n2 and a path Pm is of Type 1.  相似文献   

16.
Let μ(G) and ω(G) be the Colin de Verdière and clique numbers of a graph G, respectively. It is well-known that μ(G)?ω(G)-1 for all graphs. Our main results include μ(G)?ω(G) for all chordal graphs; μ(G)?tw(G)+1 for all graphs (where tw is the tree-width), and a characterization of those split (⊆ chordal) graphs for which μ(G)=ω(G). The bound μ(G)?tw(G)+1 improves a result of Colin de Verdière by a factor of 2.  相似文献   

17.
We consider a problem related to Hadwiger's Conjecture. Let D=(d1, d2, …, dn) be a graphic sequence with 0?d1?d2?···?dn?n?1. Any simple graph G with D its degree sequence is called a realization of D. Let R[D] denote the set of all realizations of D. Define h(D)=max{h(G): GR[D]} and χ(D)=max{χ(G): GR[D]}, where h(G) and χ(G) are Hadwiger number and chromatic number of a graph G, respectively. Hadwiger's Conjecture implies that h(D)?χ(D). In this paper, we establish the above inequality for near regular degree sequences. © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 175–183, 2010  相似文献   

18.
《Discrete Mathematics》2002,231(1-3):257-262
Let β(G) and IR(G) denote the independence number and the upper irredundance number of a graph G. We prove that in any graph of order n, minimum degree δ and maximum degree Δ≠0, IR(G)⩽n/(1+δ/Δ) and IR(G)−β(G)⩽((Δ−2)/2Δ)n. The two bounds are attained by arbitrarily large graphs. The second one proves a conjecture by Rautenbach related to the case Δ=3. When the chromatic number χ of G is less than Δ, it can be improved to IR(G)−β(G)⩽((χ−2)/2χ)n in any non-empty graph of order n⩾2.  相似文献   

19.
For a graph G=(V(G),E(G)), a strong edge coloring of G is an edge coloring in which every color class is an induced matching. The strong chromatic index of G, χs(G), is the smallest number of colors in a strong edge coloring of G. The strong chromatic index of the random graph G(n,p) was considered in Discrete Math. 281 (2004) 129, Austral. J. Combin. 10 (1994) 97, Austral. J. Combin. 18 (1998) 219 and Combin. Probab. Comput. 11 (1) (2002) 103. In this paper, we consider χs(G) for a related class of graphs G known as uniform or ε-regular graphs. In particular, we prove that for 0<ε?d<1, all (d,ε)-regular bipartite graphs G=(UV,E) with |U|=|V|?n0(d,ε) satisfy χs(G)?ζ(ε)Δ(G)2, where ζ(ε)→0 as ε→0 (this order of magnitude is easily seen to be best possible). Our main tool in proving this statement is a powerful packing result of Pippenger and Spencer (Combin. Theory Ser. A 51(1) (1989) 24).  相似文献   

20.
The Hadwiger number η(G) of a graph G is the largest integer h such that the complete graph on h nodes Kh is a minor of G. Equivalently, η(G) is the largest integer such that any graph on at most η(G) nodes is a minor of G. The Hadwiger's conjecture states that for any graph G, η(G)?χ(G), where χ(G) is the chromatic number of G. It is well-known that for any connected undirected graph G, there exists a unique prime factorization with respect to Cartesian graph products. If the unique prime factorization of G is given as G1G2□?□Gk, where each Gi is prime, then we say that the product dimension of G is k. Such a factorization can be computed efficiently.In this paper, we study the Hadwiger's conjecture for graphs in terms of their prime factorization. We show that the Hadwiger's conjecture is true for a graph G if the product dimension of G is at least . In fact, it is enough for G to have a connected graph M as a minor whose product dimension is at least , for G to satisfy the Hadwiger's conjecture. We show also that if a graph G is isomorphic to Fd for some F, then η(G)?χ(G)⌊(d-1)/2⌋, and thus G satisfies the Hadwiger's conjecture when d?3. For sufficiently large d, our lower bound is exponentially higher than what is implied by the Hadwiger's conjecture.Our approach also yields (almost) sharp lower bounds for the Hadwiger number of well-known graph products like d-dimensional hypercubes, Hamming graphs and the d-dimensional grids. In particular, we show that for the d-dimensional hypercube Hd, . We also derive similar bounds for Gd for almost all G with n nodes and at least edges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号