首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is shown that a line graph G has clique-width at most 8k+4 and NLC-width at most 4k+3, if G contains a vertex whose non-neighbours induce a subgraph of clique-width k or NLC-width k in G, respectively. This relation implies that co-gem-free line graphs have clique-width at most 14 and NLC-width at most 7.It is also shown that in a line graph the neighbours of a vertex induce a subgraph of clique-width at most 4 and NLC-width at most 2.  相似文献   

2.
Cliquewidth and NLC-width are two closely related parameters that measure the complexity of graphs. Both clique- and NLC-width are defined to be the minimum number of labels required to create a labelled graph by certain terms of operations. Many hard problems on graphs become solvable in polynomial-time if the inputs are restricted to graphs of bounded clique- or NLC-width. Cliquewidth and NLC-width differ at most by a factor of two.The relative counterparts of these parameters are defined to be the minimum number of labels necessary to create a graph while the tree-structure of the term is fixed. We show that Relative Cliquewidth and Relative NLC-width differ significantly in computational complexity. While the former problem is NP-complete the latter is solvable in polynomial time. The relative NLC-width can be computed in O(n3) time, which also yields an exact algorithm for computing the NLC-width in time O(3nn). Additionally, our technique enables a combinatorial characterisation of NLC-width that avoids the usual operations on labelled graphs.  相似文献   

3.
A graph is 2K2-partitionable if its vertex set can be partitioned into four nonempty parts A, B, C, D such that each vertex of A is adjacent to each vertex of B, and each vertex of C is adjacent to each vertex of D. Determining whether an arbitrary graph is 2K2-partitionable is the only vertex-set partition problem into four nonempty parts according to external constraints whose computational complexity is open. We show that for C4-free graphs, circular-arc graphs, spiders, P4-sparse graphs, and bipartite graphs the 2K2-partition problem can be solved in polynomial time.  相似文献   

4.
Given a graph G, the graph Gl has the same vertex set and two vertices are adjacent in Gl if and only if they are at distance at most l in G. The l-coloring problem consists in finding an optimal vertex coloring of the graph Gl, where G is the input graph. We show that, for any fixed value of l, the l-coloring problem is polynomial when restricted to graphs of bounded NLC-width (or clique-width), if an expression of the graph is also part of the input. We also prove that the NLC-width of Gl is at most 2(l+1)nlcw(G).  相似文献   

5.
We show that a set of graphs has bounded tree-width or bounded path-width if and only if the corresponding set of line graphs has bounded clique-width or bounded linear clique-width, respectively. This relationship implies some interesting algorithmic properties and re-proves already known results in a very simple way. It also shows that the minimization problem for NLC-width is NP-complete.  相似文献   

6.
Berge's strong perfect-graph conjecture states that a graph is perfect iff it has neither C2n+1 nor C2n+1, n ≥ 2 as an induced subgraph. In this note we establish the validity of this conjecture for (K4?e)-free graphs.  相似文献   

7.
Chain graphs are exactly bipartite graphs without induced 2K 2 (a graph with four vertices and two disjoint edges). A graph G=(V,E) with a given independent set SV (a set of pairwise non-adjacent vertices) is said to be a chain partitioned probe graph if G can be extended to a chain graph by adding edges between certain vertices in S. In this note we give two characterizations for chain partitioned probe graphs. The first one describes chain partitioned probe graphs by six forbidden subgraphs. The second one characterizes these graphs via a certain “enhanced graph”: G is a chain partitioned probe graph if and only if the enhanced graph G * is a chain graph. This is analogous to a result on interval (respectively, chordal, threshold, trivially perfect) partitioned probe graphs, and gives an O(m 2)-time recognition algorithm for chain partitioned probe graphs.  相似文献   

8.
We consider the sandwich problem, a generalization of the recognition problem introduced by Golumbic et al. (1995) [15], with respect to classes of graphs defined by excluding induced subgraphs. We prove that the sandwich problem corresponding to excluding a chordless cycle of fixed length k is NP-complete. We prove that the sandwich problem corresponding to excluding Kr?e for fixed r is polynomial. We prove that the sandwich problem corresponding to 3PC(⋅,⋅)-free graphs is NP-complete. These complexity results are related to the classification of a long-standing open problem: the sandwich problem corresponding to perfect graphs.  相似文献   

9.
In this paper we introduce the graph layout parameter neighbourhood-width as a variation of the well-known cut-width. The cut-width of a graph G=(V,E) is the smallest integer k, such that there is a linear layout ?:V→{1,…,|V|}, such that for every 1?i<|V| there are at most k edges {u,v} with ?(u)?i and ?(v)>i. The neighbourhood-width of a graph is the smallest integer k, such that there is a linear layout ?, such that for every 1?i<|V| the vertices u with ?(u)?i can be divided into at most k subsets each members having the same neighbourhood with respect to the vertices v with ?(v)>i.We show that the neighbourhood-width of a graph differs from its linear clique-width or linear NLC-width at most by one. This relation is used to show that the minimization problem for neighbourhood-width is NP-complete.Furthermore, we prove that simple modifications of neighbourhood-width imply equivalent layout characterizations for linear clique-width and linear NLC-width.We also show that every graph of path-width k or cut-width k has neighbourhood-width at most k+2 and we give several conditions such that graphs of bounded neighbourhood-width have bounded path-width or bounded cut-width.  相似文献   

10.
11.
The maximum weight stable set problem (MWS) is the weighted version of the maximum stable set problem (MS), which is NP-hard. The class of P5-free graphs – i.e., graphs with no induced path of five vertices – is the unique minimal class, defined by forbidding a single connected subgraph, for which the computational complexity of MS is an open question. At the same time, it is known that MS can be efficiently solved for (P5,F)(P5,F)-free graphs, where F is any graph of five vertices different to a C5. In this paper we introduce some observations on P5-free graphs, and apply them to introduce certain subclasses of such graphs for which one can efficiently solve MWS. That extends or improves some known results, and implies – together with other known results – that MWS can be efficiently solved for (P5,F)(P5,F)-free graphs where F is any graph of five vertices different to a C5.  相似文献   

12.
Sumner [7] proved that every connected K 1,3-free graph of even order has a perfect matching. He also considered graphs of higher connectivity and proved that if m ≥ 2, every m-connected K 1,m+1-free graph of even order has a perfect matching. In [6], two of the present authors obtained a converse of sorts to Sumner’s result by asking what single graph one can forbid to force the existence of a perfect matching in an m-connected graph of even order and proved that a star is the only possibility. In [2], Fujita et al. extended this work by considering pairs of forbidden subgraphs which force the existence of a perfect matching in a connected graph of even order. But they did not settle the same problem for graphs of higher connectivity. In this paper, we give an answer to this problem. Together with the result in [2], a complete characterization of the pairs is given.  相似文献   

13.
Daligault, Rao and Thomassé asked whether a hereditary class of graphs well-quasi-ordered by the induced subgraph relation has bounded clique-width. Lozin, Razgon and Zamaraev recently showed that this is not true for classes defined by infinitely many forbidden induced subgraphs. However, in the case of finitely many forbidden induced subgraphs the question remains open and we conjecture that in this case the answer is positive. The conjecture is known to hold for classes of graphs defined by a single forbidden induced subgraph H, as such graphs are well-quasi-ordered and are of bounded clique-width if and only if H is an induced subgraph of P 4. For bigenic classes of graphs, i.e. ones defined by two forbidden induced subgraphs, there are several open cases in both classifications. In the present paper we obtain a number of new results on well-quasi-orderability of bigenic classes, each of which supports the conjecture.  相似文献   

14.
We define the A4structure of a graph G to be the 4‐uniform hypergraph on the vertex set of G whose edges are the vertex subsets inducing 2K2, C4, or P4. We show that perfection of a graph is determined by its A4‐structure. We relate the A4‐structure to the canonical decomposition of a graph as defined by Tyshkevich [Discrete Math 220 (2000) 201–238]; for example, a graph is indecomposable if and only if its A4‐structure is connected. We also characterize the graphs having the same A4‐structure as a split graph.  相似文献   

15.
We consider the problem of clique‐coloring, that is coloring the vertices of a given graph such that no maximal clique of size at least 2 is monocolored. Whereas we do not know any odd‐hole‐free graph that is not 3‐clique‐colorable, the existence of a constant C such that any perfect graph is C‐clique‐colorable is an open problem. In this paper we solve this problem for some subclasses of odd‐hole‐free graphs: those that are diamond‐free and those that are bull‐free. We also prove the NP‐completeness of 2‐clique‐coloring K4‐free perfect graphs. © 2006 Wiley Periodicals, Inc. J Graph Theory 53: 233–249, 2006  相似文献   

16.
We prove that the non-trivial (finite or infinite) weakly median graphs which are undecomposable with respect to gated amalgamation and Cartesian multiplication are the 5-wheels, the subhyperoctahedra different from K1, the path K1,2 and the 4-cycle K2,2, and the two-connected K4- and K1,1,3-free bridged graphs. These prime graphs are exactly the weakly median graphs which do not have any proper gated subgraphs other than singletons. For finite graphs, these results were already proved in [H.-J. Bandelt, V.C. Chepoi, The algebra of metric betweenness I: subdirect representation, retracts, and axiomatics of weakly median graphs, preprint, 2002]. A graph G is said to have the half-space copoint property (HSCP) if every non-trivial half-space of the geodesic convexity of G is a copoint at each of its neighbors. It turns out that any median graph has the HSCP. We characterize the weakly median graphs having the HSCP. We prove that the class of these graphs is closed under gated amalgamation and Cartesian multiplication, and we describe the prime and the finite regular elements of this class.  相似文献   

17.
《Quaestiones Mathematicae》2013,36(2):259-264
Abstract

An F-free colouring of a graph G is a partition {V1,V2,…,Vn} of the vertex set V(G) of G such that F is not an induced subgraph of G[Vi] for each i. A graph is uniquely F-free colourable if any two .F-free colourings induce the same partition of V(G). We give a constructive proof that uniquely C4-free colourable graphs exist.  相似文献   

18.
It was conjectured in 1981 by the third author that if a graph G does not contain more than t pairwise edge-disjoint triangles, then there exists a set of at most 2t edges that shares an edge with each triangle of G. In this paper, we prove this conjecture for odd-wheel-free graphs and for ‘triangle-3-colorable’ graphs, where the latter property means that the edges of the graph can be colored with three colors in such a way that each triangle receives three distinct colors on its edges. Among the consequences we obtain that the conjecture holds for every graph with chromatic number at most four. Also, two subclasses of K 4-free graphs are identified, in which the maximum number of pairwise edge-disjoint triangles is equal to the minimum number of edges covering all triangles. In addition, we prove that the recognition problem of triangle-3-colorable graphs is intractable.  相似文献   

19.
It is known that there are class two graphs with Δ=6 which can be embedded in a surface Σ with Euler characteristic χ(Σ)?0. However, it is unknown whether there are class two graphs on the projective plane or on the plane with Δ=6. In this paper, we prove that every graph with Δ=6 is class one if it can be embedded in a surface with Euler characteristic at least -3 and is C3-free, or C4-free or if it can be embedded in a surface with Euler characteristic at least -1 and is C5-free. This generalizes Zhou's results in [G. Zhou, A note on graphs of class I, Discrete Math. 263 (2003) 339-345] on planar graphs.  相似文献   

20.
We study algorithms for ?SAT and its generalized version ?GENSAT, the problem of computing the number of satisfying assignments of a set of propositional clauses Σ. For this purpose we consider the clauses given by their incidence graph, a signed bipartite graph SI(Σ), and its derived graphs I(Σ) and P(Σ).It is well known, that, given a graph of tree-width k, a k-tree decomposition can be found in polynomial time. Very recently Oum and Seymour have shown that, given a graph of clique-width k, a (23k+2-1)-parse tree witnessing clique-width can be found in polynomial time.In this paper we present an algorithm for ?GENSAT for formulas of bounded tree-width k which runs in time 4k(n+n2·log2(n)), where n is the size of the input. The main ingredient of the algorithm is a splitting formula for the number of satisfying assignments for a set of clauses Σ where the incidence graph I(Σ) is a union of two graphs G1 and G2 with a shared induced subgraph H of size at most k. We also present analogue improvements for algorithms for formulas of bounded clique-width which are given together with their derivation.This considerably improves results for ?SAT, and hence also for SAT, previously obtained by Courcelle et al. [On the fixed parameter complexity of graph enumeration problems definable in monadic second order logic, Discrete Appl. Math. 108 (1-2) (2001) 23-52].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号