首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For a simple graph G on n vertices, the minimum rank of G over a field F, written as mrF(G), is defined to be the smallest possible rank among all n×n symmetric matrices over F whose (i,j)th entry (for ij) is nonzero whenever {i,j} is an edge in G and is zero otherwise. A symmetric integer matrix A such that every off-diagonal entry is 0, 1, or -1 is called a universally optimal matrix if, for all fields F, the rank of A over F is the minimum rank of the graph of A over F. Recently, Dealba et al. [L.M. Dealba, J. Grout, L. Hogben, R. Mikkelson, K. Rasmussen, Universally optimal matrices and field independence of the minimum rank of a graph, Electron. J. Linear Algebra 18 (2009) 403-419] initiated the study of universally optimal matrices and established field independence or dependence of minimum rank for some families of graphs. In the present paper, more results on universally optimal matrices and field independence or dependence of the minimum rank of a graph are presented, and some results of Dealba et al. [5] are improved.  相似文献   

2.
Zero forcing sets and the minimum rank of graphs   总被引:2,自引:0,他引:2  
The minimum rank of a simple graph G is defined to be the smallest possible rank over all symmetric real matrices whose ijth entry (for ij) is nonzero whenever {i,j} is an edge in G and is zero otherwise. This paper introduces a new graph parameter, Z(G), that is the minimum size of a zero forcing set of vertices and uses it to bound the minimum rank for numerous families of graphs, often enabling computation of the minimum rank.  相似文献   

3.
The minimum skew rank of a simple graph G   is the smallest possible rank among all real skew-symmetric matrices whose (i,j)(i,j)-entry is nonzero if and only if the edge joining i and j is in G. It is known that a graph has minimum skew rank 2 if and only if it consists of a complete multipartite graph and some isolated vertices. Some necessary conditions for a graph to have minimum skew rank 4 are established, and several families of graphs with minimum skew rank 4 are given. Linear algebraic techniques are developed to show that complements of trees and certain outerplanar graphs have minimum skew rank 4.  相似文献   

4.
Let A be a Hermitian matrix whose graph is G (i.e. there is an edge between the vertices i and j in G if and only if the (i,j) entry of A is non-zero). Let λ be an eigenvalue of A with multiplicity mA(λ). An edge e=ij is said to be Parter (resp., neutral, downer) for λ,A if mA(λ)−mAe(λ) is negative (resp., 0, positive ), where Ae is the matrix resulting from making the (i,j) and (j,i) entries of A zero. For a tree T with adjacency matrix A a subset S of the edge set of G is called an edge star set for an eigenvalue λ of A, if |S|=mA(λ) and AS has no eigenvalue λ. In this paper the existence of downer edges and edge star sets for non-zero eigenvalues of the adjacency matrix of a tree is proved. We prove that neutral edges always exist for eigenvalues of multiplicity more than 1. It is also proved that an edge e=uv is a downer edge for λ,A if and only if u and v are both downer vertices for λ,A; and e=uv is a neutral edge if u and v are neutral vertices. Among other results, it is shown that any edge star set for each eigenvalue of a tree is a matching.  相似文献   

5.
The zero forcing number Z(G), which is the minimum number of vertices in a zero forcing set of a graph G, is used to study the maximum nullity/minimum rank of the family of symmetric matrices described by G. It is shown that for a connected graph of order at least two, no vertex is in every zero forcing set. The positive semidefinite zero forcing number Z+(G) is introduced, and shown to be equal to |G|-OS(G), where OS(G) is the recently defined ordered set number that is a lower bound for minimum positive semidefinite rank. The positive semidefinite zero forcing number is applied to the computation of positive semidefinite minimum rank of certain graphs. An example of a graph for which the real positive symmetric semidefinite minimum rank is greater than the complex Hermitian positive semidefinite minimum rank is presented.  相似文献   

6.
The minimum (symmetric) rank of a simple graph G over a field F is the smallest possible rank among all symmetric matrices over F whose ijth entry (for ij) is nonzero whenever {i,j} is an edge in G and is zero otherwise. The problem of determining minimum (symmetric) rank has been studied extensively. We define the minimum skew rank of a simple graph G to be the smallest possible rank among all skew-symmetric matrices over F whose ijth entry (for ij) is nonzero whenever {i,j} is an edge in G and is zero otherwise. We apply techniques from the minimum (symmetric) rank problem and from skew-symmetric matrices to obtain results about the minimum skew rank problem.  相似文献   

7.
For a graph G of order n, the maximum nullity of G is defined to be the largest possible nullity over all real symmetric n×n matrices A whose (i,j)th entry (for ij) is nonzero whenever {i,j} is an edge in G and is zero otherwise. Maximum nullity and the related parameter minimum rank of the same set of matrices have been studied extensively. A new parameter, maximum generic nullity, is introduced. Maximum generic nullity provides insight into the structure of the null-space of a matrix realizing maximum nullity of a graph. It is shown that maximum generic nullity is bounded above by edge connectivity and below by vertex connectivity. Results on random graphs are used to show that as n goes to infinity almost all graphs have equal maximum generic nullity, vertex connectivity, edge connectivity, and minimum degree.  相似文献   

8.
For a graph G of order n, the minimum rank of G is defined to be the smallest possible rank over all real symmetric n×n matrices A whose (i,j)th entry (for ij) is nonzero whenever {i,j} is an edge in G and is zero otherwise. We prove an upper bound for minimum rank in terms of minimum degree of a vertex is valid for many graphs, including all bipartite graphs, and conjecture this bound is true over for all graphs, and prove a related bound for all zero-nonzero patterns of (not necessarily symmetric) matrices. Most of the results are valid for matrices over any infinite field, but need not be true for matrices over finite fields.  相似文献   

9.
An ordered n-tuple (vi1,vi2,…,vin) is called a sequential labelling of graph G if {vi1,vi2,…,vin} = V(G) and the subgraph induced by {vi1,vi2,…, vij} is connected for 1≤jn. Let σ(v;G) denote the number of sequential labellings of G with vi1=v. Vertex v is defined to be an accretion center of G if σ is maximized at v. This is shown to generalize the concept of a branch weight centroid of a tree since a vertex in a tree is an accretion center if and only if it is a centroid vertex. It is not, however, a generalization of the concept of a median since for a general graph an accretion center is not necessarily a vertex of minimum distance. A method for computing σ(v;G) based upon edge contractions is described.  相似文献   

10.
For an undirected simple graph G, the minimum rank among all positive semidefinite matrices with graph G is called the minimum semidefinite rank (msr) of G. In this paper, we show that the msr of a given graph may be determined from the msr of a related bipartite graph. Finding the msr of a given bipartite graph is then shown to be equivalent to determining which digraphs encode the zero/nonzero pattern of a unitary matrix. We provide an algorithm to construct unitary matrices with a certain pattern, and use previous results to give a lower bound for the msr of certain bipartite graphs.  相似文献   

11.
Let X be a tree and let G=Aut(X), Bass and Tits have given an algorithm to construct the ‘ultimate quotient’ of X by G starting with any quotient of X, an ‘edge-indexed’ graph. Using a sequence of integers that we compute at consecutive steps of the Bass-Tits (BT) algorithm, we give a lower bound on the diameter of the ultimate quotient of a tree by its automorphism group. For a tree X with finite quotient, this gives a lower bound on the minimum number of generators of a uniform X-lattice whose quotient graph coincides with G?X. This also gives a criterion to determine if the ultimate quotient of a tree is infinite. We construct an edge-indexed graph (A,i) for a deterministic finite state automaton and show that the BT algorithm for computing the ultimate quotient of (A,i) coincides with state minimizing algorithm for finite state automata. We obtain a lower bound on the minimum number of states of the minimized automaton. This gives a new proof that language for the word problem in a finitely generated group is regular if and only if the group is finite, and a new proof that the language of the membership problem for a subgroup is regular if and only if the subgroup has finite index.  相似文献   

12.
Let G=(V,E) be a graph with V={1,2,…,n}. Define S(G) as the set of all n×n real-valued symmetric matrices A=[aij] with aij≠0,ij if and only if ijE. By M(G) we denote the largest possible nullity of any matrix AS(G). The path cover number of a graph G, denoted P(G), is the minimum number of vertex disjoint paths occurring as induced subgraphs of G which cover all the vertices of G.There has been some success with relating the path cover number of a graph to its maximum nullity. Johnson and Duarte [5], have shown that for a tree T,M(T)=P(T). Barioli et al. [2], show that for a unicyclic graph G,M(G)=P(G) or M(G)=P(G)-1. Notice that both families of graphs are outerplanar. We show that for any outerplanar graph G,M(G)?P(G). Further we show that for any partial 2-path G,M(G)=P(G).  相似文献   

13.
The matrix A = (aij) ∈ Sn is said to lie on a strict undirected graph G if aij = 0 (i ≠ j) whenever (ij) is not in E(G). If S is skew-symmetric, the isospectral flow maintains the spectrum of A. We consider isospectral flows that maintain a matrix A(t) on a given graph G. We review known results for a graph G that is a (generalised) path, and construct isospectral flows for a (generalised) ring, and a star, and show how a flow may be constructed for a general graph. The analysis may be applied to the isospectral problem for a lumped-mass finite element model of an undamped vibrating system. In that context, it is important that the flow maintain other properties such as irreducibility or positivity, and we discuss whether they are maintained.  相似文献   

14.
The minimum rank of a simple graph G is defined to be the smallest possible rank over all symmetric real matrices whose ijth entry (for ij) is nonzero whenever {i,j} is an edge in G and is zero otherwise. Minimum rank is a difficult parameter to compute. However, there are now a number of known reduction techniques and bounds that can be programmed on a computer; we have developed a program using the open-source mathematics software Sage to implement several techniques. We have also established several additional strategies for computation of minimum rank. These techniques have been used to determine the minimum ranks of all graphs of order 7.  相似文献   

15.
A simple, finite graph G is called a time graph (equivalently, an indifference graph) if there is an injective real function f on the vertices v(G) such that vivje(G) for vivj if and only if |f(vi) ? f(vj)| ≤ 1. A clique of a graph G is a maximal complete subgraph of G. The clique graph K(G) of a graph G is the intersection graph of the cliques of G. It will be shown that the clique graph of a time graph is a time graph, and that every time graph is the clique graph of some time graph. Denote the clique graph of a clique graph of G by K2(G), and inductively, denote K(Km?1(G)) by Km(G). Define the index indx(G) of a connected time graph G as the smallest integer n such that Kn(G) is the trivial graph. It will be shown that the index of a time graph is equal to its diameter. Finally, bounds on the diameter of a time graph will be derived.  相似文献   

16.
Let G be a graph with vertex set V and edge set E, and let A be an abelian group. A labeling f:VA induces an edge labeling f:EA defined by f(xy)=f(x)+f(y). For iA, let vf(i)=card{vV:f(v)=i} and ef(i)=card{eE:f(e)=i}. A labeling f is said to be A-friendly if |vf(i)−vf(j)|≤1 for all (i,j)∈A×A, and A-cordial if we also have |ef(i)−ef(j)|≤1 for all (i,j)∈A×A. When A=Z2, the friendly index set of the graph G is defined as {|ef(1)−ef(0)|:the vertex labelingf is Z2-friendly}. In this paper we completely determine the friendly index sets of 2-regular graphs. In particular, we show that a 2-regular graph of order n is cordial if and only if n?2 (mod 4).  相似文献   

17.
Let K(G) for a finite graph G with vertices v1,...,vn denote the K-algebra with generators X1,...,Xn and defining relations XiXj=XjXi if and only if vi is not connected to vj by an edge in G. We describe centralizers of monomials, show that the centralizer of a monomial is again a graph algebra, prove a unique factorization theorem for factorizations of monomials into commuting factors, compute the homology of K(G), and show that K(G) is the homology ring of a certain loop space. We also construct a K(π, 1) explicitly where π is the group with generators X1,...,Xn and defining relations XiXj=XjXi if and only if vi is not connected to vj by an edge in G.  相似文献   

18.
Let BD denote that Drazin inverse of the n×n complex matrix B. Define the core-rank of B as rank (Bi(B)) where i(B) is the index of B. Let j = 1,2,…, and Aj and A be square matrices such that Ai converges to A with respect to some norm. The main result of this paper is that AjD converges to AD if and only if there exist a j0 such that core-rank Aj=core-rankA for j ? j0.  相似文献   

19.
If A is the adjacency matrix of a graph G, then Ai is the adjacency matrix of the graph on the same vertex set in which a pair of vertices is adjacent if and only if their distance apart is i in G. If G is distance-regular, then Ai is a polynomial of degree i in A. It is shown that the converse is also true. If Ai is a polynomial in A, not necessarily of degree i, G is said to be distance-polynomial. It is shown that this is a larger class of graphs and some of its properties are investigated.  相似文献   

20.
Let D(G)=(di,j)n×n denote the distance matrix of a connected graph G with order n, where dij is equal to the distance between vi and vj in G. The largest eigenvalue of D(G) is called the distance spectral radius of graph G, denoted by ?(G). In this paper, some graft transformations that decrease or increase ?(G) are given. With them, for the graphs with both order n and k pendant vertices, the extremal graphs with the minimum distance spectral radius are completely characterized; the extremal graph with the maximum distance spectral radius is shown to be a dumbbell graph (obtained by attaching some pendant edges to each pendant vertex of a path respectively) when 2≤kn−2; for k=1,2,3,n−1, the extremal graphs with the maximum distance spectral radius are completely characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号