首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Vibrational spectra of microsolvated benzonitrile radical anions (C6H5CN- -S; S = H2O and CH3OH) were measured by probing the electron detachment efficiency in the 3 microm region, representing resonance bands of autodetachment via OH stretching vibrations of the solvent molecules. The hydrogen-bonded OH band for both the cluster anions exhibited a large shift to the lower energy side with approximately 300 cm-1 compared to those for the corresponding neutral clusters. The solvent molecules are bound collinearly to the edge of the CN group of the benzonitrile anion in the cluster structures optimized with the density functional theory, in which the simulated vibrational energies are in good agreement with the observed band positions. Natural population analyses were performed for a qualitative implication in changes of solvent orientation upon electron attachment. Asymmetric band shapes depending on the vibrational modes are discussed with respect to dynamics of the autodetachment process from a theoretical aspect incorporated with density functional calculations.  相似文献   

2.
Photoelectron spectroscopy of the water cluster anions, (H2O)n-, has revealed that several isomeric forms are present for most sizes, and here, we use vibrational spectroscopy to address the structure of the (H2O)6- isomer that more weakly binds the extra electron. To overcome the severe line broadening that occurs in the OH stretching region of this isomer caused by fast electron autodetachment, we concentrate on the low-energy bending modes of the perdeutero isotopomer. Sharp spectroscopic signatures are recovered for two isomers using argon predissociation spectroscopy, and the resulting bands are heavily overlapped. To extract their independent contributions to the observed spectra, we exploit the substantial dependence of their relative populations on the number of attached argon atoms in the (D2O)6-.Ar(m) clusters, determined by photoelectron spectroscopy. The vibrational spectra of each isomer can then be isolated by spectral subtraction, which is implemented with a covariance mapping approach. The resulting band patterns establish that the more weakly binding isomer does not display the characteristic electron-binding motif common to the more strongly bound isomer class. Whereas the strongly binding isomer features a single water molecule pointing toward the excess electron cloud with both of its hydrogen atoms, the spectrum of the more weakly binding isomer suggests a structure where the electron is bound by a number of dangling OH groups corresponding to water molecules in acceptor-donor binding sites.  相似文献   

3.
We present the first results from an experiment designed to explore barriers for interconversion between isomers of cluster anions using an Ar-cluster mediated pump-probe technique. In this approach, anions are generated with many Ar atoms attached, and one of the isomers present is selectively excited by tuning an infrared laser to one of the isomer's characteristic vibrational resonances. The excited cluster is then cooled by evaporation of Ar atoms, and the isomer distribution in the lighter daughter ions is measured after secondary mass selection by recording their photoelectron spectra using velocity-map imaging. We apply the method to the water hexamer anion, (H(2)O)(6) (-), which is known to occur in two isomeric forms with different electron-binding energies. We find that conversion of the high-binding (type I) form to the low-binding (type II) isomer is not efficiently driven in (H(2)O)(6) (-) with excitation energies in the 0.4 eV range even though it is possible to create both isomers in abundance in the ion source. This observation is discussed in the context of the competition between isomerization and electron autodetachment, which depends on the relative positions of the neutral and ionic potential surfaces along the isomerization pathway. Application of the method to the more complex heptamer ion, however, does reveal that interconversion is available among the highest binding isomer classes (I and I(')).  相似文献   

4.
Dessent CE  Kim J  Johnson MA 《Faraday discussions》2000,(115):395-406; discussion 407-29
We report the observation of resonance structure in the absorption and X-/NO2- photofragment action spectra of the X-.CH3NO2 (X- = I- and Br-) complexes in the region above the electron detachment threshold. The resonance structure corresponds to peaks which appear at the onsets for vibrational excitation of the -NO2 wag, scissors, and stretch modes of neutral CH3NO2, the modes which most strongly distort upon electron capture into its pi* lowest unoccupied molecular orbital. We attribute the peaks to excitation of vibrational Feshbach resonances of the CH3NO2- transient negative ion, where near-threshold excitation of X-.CH3NO2 spectroscopically accesses states of the free electron-CH3NO2 system.  相似文献   

5.
The vibrational absorption spectra and vibrational circular dichroism (VCD) spectra of both enantiomers of 4-X-[2.2]paracyclophanes (X = COOCD3, Cl, I) have been recorded for a few regions in the range of 900-12000 cm(-1). The analysis of the VCD spectra for the two IR regions, 900-1600 cm(-1) and 2800-3200 cm(-1), is conducted by comparing with DFT calculations of the corresponding spectra; the latter region reveals common motifs of vibrational modes for the three molecules for aliphatic CH stretching fundamentals, whereas in the mid-IR region, one is able to identify specific signatures arising from the substituent groups X. In the CH stretching region between 2900 and 2800 cm(-1), we identify and interpret a group of three IR VCD bands due to HCH bending overtone transitions in Fermi resonance with CH stretching fundamental transitions. The analysis of the NIR region between approximately 8000 and approximately 9000 cm(-1) for X = COOCD3 reveals important features of the aromatic CH stretching overtones that are of value since the aromatic CH stretching fundamentals are almost silent. The intensifying of such overtones is attributed to electrical anharmonicity terms, which are evaluated here by ab initio methods and compared with literature data.  相似文献   

6.
The Cl- -C6H5CH3*Ar, Cl- -C6H5NH2*Ar, and Cl- -C6H5OH*Ar anion complexes are investigated using infrared photodissociation spectroscopy and ab initio calculations at the MP2/aug-cc-pVDZ level. The results indicate that for Cl- -C6H5NH2 and Cl- -C6H5OH, the Cl- anion is attached to the substituent group by a single near-linear hydrogen bond. For Cl--C6H5CH3, the Cl- is attached to an ortho-hydrogen atom on the aromatic ring and to a hydrogen atom on the methyl group by a weaker hydrogen bond. The principal spectroscopic consequence of the hydrogen-bonding interaction in the three complexes is a red-shift and intensity increase for the CH, NH, and OH stretching modes. Complexities in the infrared spectra in the region of the hydrogen-bonded XH stretch band are associated with Fermi resonances between the hydrogen-stretching vibrational modes and bending overtone and combination levels. There are notable correlations between the vibrational red-shift, the elongation of the H-bonded XH group, and the proton affinity of the aromatic molecule's conjugate base.  相似文献   

7.
We report a combined photoelectron and vibrational spectroscopy study of the (H(2)O)(7)(-) cluster anions in order to correlate structural changes with the observed differences in electron binding energies of the various isomers. Photoelectron spectra of the (H(2)O)(7)(-) . Ar(m) clusters are obtained over the range of m=0-10. These spectra reveal the formation of a new isomer (I') for m>5, the electron binding energy of which is about 0.15 eV higher than that of the type I form previously reported to be the highest binding energy species [Coe et al., J. Chem. Phys. 92, 3980 (1990)]. Isomer-selective vibrational predissociation spectra are obtained using both the Ar dependence of the isomer distribution and photochemical depopulation of the more weakly (electron) binding isomers. The likely structures of the isomers at play are identified with the aid of electronic structure calculations, and the electron binding energies, as well as harmonic vibrational spectra, are calculated for 28 low-lying forms for comparison with the experimental results. The HOH bending spectrum of the low binding type II form is dominated by a band that is moderately redshifted relative to the bending origin of the bare water molecule. Calculations trace this feature primarily to the bending vibration localized on a water molecule in which a dangling H atom points toward the electron cloud. Both higher binding forms (I and I') display the characteristic patterns in the bending and OH stretching regions signaling electron attachment primarily to a water molecule in an AA binding site, a persistent motif found in non-isomer-selective spectra of the clusters up to (H(2)O)(50)(-).  相似文献   

8.
We report vibrational predissociation spectra of the (H2O)n- cluster ions in the OH stretching region to determine whether the spectral signature of the electron-binding motif identified in the smaller clusters [Hammer et al. Science 306, 675 (2004)] continues to be important in the intermediate size regime (n = 7-21). This signature consists of a redshifted doublet that dominates the OH stretching region, and has been traced primarily to the excitation of a single water molecule residing in a double H-bond acceptor (AA) binding site, oriented with both of its H atoms pointing toward the excess electron cloud. Strong absorption near the characteristic AA doublet is found to persist in the spectra of the larger clusters, but the pattern evolves into a broadened triplet around n = 11. A single free OH feature associated with dangling hydrogen atoms on the cluster surface is observed to emerge for n > or = 15, in sharp contrast to the multiplet pattern of unbonded OH stretches displayed by the H+(H2O)n clusters throughout the n = 2-29 range. We also explore the vibration-electronic coupling associated with normal-mode displacements of the AA molecule that most strongly interact with the excess electron. Specifically, electronic structure calculations on the hexamer anion indicate that displacement along the -OH2 symmetric stretching mode dramatically distorts the excess electron cloud, thus accounting for the anomalously large oscillator strength of the AA water stretching vibrations. We also discuss these vibronic interactions in the context of a possible relaxation mechanism for the excited electronic states involving the excess electron.  相似文献   

9.
We investigate the role of vibrational energy excitation of methane and two deuterated species (CD(4) and CH(2)D(2)) in the collision-induced dissociation (CID) process with argon at hyperthermal energies. The quasi-classical trajectory method has been applied, and the reactive Ar + CH(4) system has been modeled by using a modified version of the CH(4) potential energy surface of Duchovic et al. (J. Phys. Chem. 1984, 88, 1339) and the Ar-CH(4) intermolecular potential function obtained by Troya (J. Phys. Chem. A 2005, 109, 5814). This study clearly shows that CID is markedly enhanced with vibrational excitation and, to a lesser degree, with collision energy. In general, CID increases by exciting stretch vibrational modes of the reactant molecule. For the direct dissociation of CH(4), however, the CID cross sections appear to be essentially independent of which vibrational mode is initially excited. In all situations studied, the CID cross sections are always greater for the Ar + CD(4) reaction than for the Ar + CH(4) one, the Ar + CH(2)D(2) being an intermediate situation. A detailed analysis of the energy transfer processes, including their relation with CID, is also presented.  相似文献   

10.
We have demonstrated the two-color vacuum ultraviolet (VUV)-infrared (IR) photoinduced Rydberg ionization (PIRI) experiment. Trichloroethene (ClCH=CCl2) and trans-2-butene (trans-CH3CH=CHCH3) were prepared in Rydberg states in the range of effective principal quantum number n* approximately 7-93 by VUV excitation prior to IR-induced autoionization. The observed VUV-IR-PIRI spectra are found to be independent of n*, suggesting that the electron Rydberg orbital is conserved, i.e., the Rydberg electron is behaving as a spectator during the excitation process. The observed IR active C-H stretching vibrational frequencies nu12+ = 3072+/-5 cm(-1) for ClCH=CCl2+ and nu23+ =2908+/-3 cm(-1), nu25+ =2990+/-10 cm(-1) and nu30+ =3022+/-10 cm(-1) for trans-CH3CH=CHCH3+ are compared with predictions based on ab initio quantum-chemical procedures and density functional calculations.  相似文献   

11.
Building upon our recent observation of the gas-phase electronic spectrum of the iodomethyl cation (CH2I+), we report an extensive study of the electronic spectroscopy of CH2I+ and its deuterated isotopomers CHDI+ and CD2I+ using a combination of fluorescence excitation and single vibronic level (SVL) emission spectroscopies. The spectra were measured in the gas phase under jet-cooled conditions using a pulsed discharge source. Fluorescence excitation spectra reveal a dominant progression in nu3 (C-I stretch), the frequency of which is markedly smaller in the upper state. Rotational analysis shows that, while the A constant is similar in the two states, the excited state has significantly smaller B and C constants. These results indicate a lengthening of the C-I bond upon electronic excitation, consistent with calculations which show that this transition is analogous to the well-known pi-pi* transition in the isoelectronic substituted formaldehydes. SVL emission spectra show progressions involving four of the six vibrational modes; only the C-H(D) stretching modes remain unobserved. The vibrational parameters determined from a Dunham expansion fit of the ground state vibrational term energies are in excellent agreement with the predictions of density functional theory (DFT) calculations. A normal-mode analysis was completed to derive a harmonic force field for the ground state, where resonance delocalization of the positive charge leads to partial double bond character, H2C+-I <--> H2C=I+, giving rise to a C-I stretching frequency significantly larger than that of the iodomethyl radical.  相似文献   

12.
Anharmonic vibrational frequencies, equilibrium bond lengths, rotational constants, and vibrational absorption spectra have been calculated for the triatomic anions, FHF(-) and OHF(-), and the heavier isotopomers FDF(-) and ODF(-). The triatomic anions are assumed to maintain a collinear configuration throughout all calculations, so only the symmetric (nu(1)) and asymmetric (nu(3)) stretching modes are considered. The two-dimensional permanent dipole surfaces and potential energy surfaces are then constructed along bond coordinates, using high-level ab initio methods. Fundamental and combination bands are obtained from the vibrational eigenfunctions, resulting in anharmonic frequencies, which can be compared with the available theoretical and experimental data. The agreement is very good, especially for the pure symmetric modes, while the asymmetric ones show larger discrepancies, presumably due to the neglected coupling between stretching and bending modes. Strong inverse anharmonicity is found in the level spacing of the asymmetric modes, for both FHF(-) and OHF(-) anions. The calculated mixed modes (nnu(1)+mnu(3), n, m=0-3) also agree reasonably with the few available experimental data, supporting our model. Based on the vibrational eigenfunctions, isotope effects are also rationalized. Infrared absorption spectra are calculated from the dipole autocorrelation function for FHF(-) and FDF(-), and for OHF(-) and ODF(-). Peak locations and relative intensities are assigned in terms of the fundamental and mixed transitions.  相似文献   

13.
We demonstrate vibrational cooling of anions via collisions with a background gas in an ion trap attached to a cryogenically controlled cold head (10-400 K). Photoelectron spectra of vibrationally cold C60(-) anions, produced by electrospray ionization and cooled in the cold ion trap, have been obtained. Relative to spectra taken at room temperature, vibrational hot bands are completely eliminated, yielding well-resolved vibrational structures and a more accurate electron affinity for neutral C60. The electron affinity of C60 is measured to be 2.683+/-0.008 eV. The cold spectra reveal complicated vibrational structures for the transition to the C60 ground state due to the Jahn-Teller effect in the ground state of C60(-). Vibrational excitations in the two A(g) modes and eight H(g) modes are observed, providing ideal data to assess the vibronic couplings in C60(-).  相似文献   

14.
Quasiclassical trajectory calculations were carried out to study the dynamics of energy transfer and collision-induced dissociation (CID) of CH(3)SH(+) + Ar at collision energies ranging from 4.34 to 34.7 eV. The relative abundances calculated for the most relevant product ions are found to be in good agreement with experiment, except for the lowest energies investigated. In general, the dissociation to form CH(3)(+) + SH is the dominant channel, even though it is not among the energetically favored reaction pathways. The results corroborate that this selective dissociation observed upon collisional activation arises from a more efficient translational to vibrational energy transfer for the low-frequency C-S stretching mode than for the high-frequency C-H stretching modes, together with weak couplings between the low- and high-frequency modes of vibration. The calculations suggest that CID takes place preferentially by a direct CH(3)(+) + SH detachment, and more efficiently when the Ar atom collides with the methyl group-side of CH(3)SH(+).  相似文献   

15.
Fourier transform infrared spectra of the nu(s) (HF stretching) band of the (CH(2))(2)S-HF complex have been recorded at 0.1-0.5 cm(-1) resolution in a cooled cell, in a supersonic jet expansion seeded with argon and in a neon matrix at 4.5 K. The combination of controlled temperature effects over a range of 40-250 K and a sophisticated band contour simulation program allows the separation of homogeneous and inhomogeneous contributions and reveals significant anharmonic couplings between intramolecular and intermolecular vibrational modes similar to our previous work on (CH(2))(2)S-DF. The sign of the coupling constants is consistent with the expected strengthening of the hydrogen bond upon vibrational excitation of HF which also explains the observed small variations of the geometrical parameters in the excited state. The analysis of sum and difference combination bands involving nu(s) provides accurate values of intermolecular harmonic frequencies and anharmonicities and a good estimate of the dissociation energy of the complex. Frequencies and coupling parameters derived from gas phase spectra compare well with results from neon matrix experiments. The effective linewidth provides a lower bound for the predissociation lifetime of 10 ps. The comparison between effective linewidths and vibrational densities of states for (CH(2))(2)S-HF and -DF complexes highlights the important role of intramolecular vibrational redistribution in the vibrational dynamics of medium strength hydrogen bonds.  相似文献   

16.
We report kinetic energy distributions of exoelectrons produced by collisions of highly vibrationally excited NO molecules with a low work function Cs dosed Au(111) surface. These measurements show that energy dissipation pathways involving nonadiabatic conversion of vibrational energy to electronic energy can result in electronic excitation of more than 3 eV, consistent with the available vibrational energy. We measured the dependence of the electron energy distributions on the translational and vibrational energy of the incident NO and find a clear positive correlation between final electron kinetic energy and initial vibrational excitation and a weak but observable inverse dependence of electron kinetic energy on initial translational energy. These observations are consistent with a vibrational autodetachment mechanism, where an electron is transferred to NO near its outer vibrational turning point and ejected near its inner vibrational turning point. Within the context of this model, we estimate the NO-to-surface distance for electron transfer.  相似文献   

17.
Spectroscopic studies of the SF6- and c-C4F8- anions are reported to provide experimental benchmarks for theoretical predictions of their structures and electron binding energies. The photoelectron spectrum of SF6- is dominated by a long progression in the S-F stretching mode, with an envelope consistent with theoretical predictions that the anion preserves the Oh symmetry of the neutral, but has a longer S-F bond length. This main progression occurs with an unexpectedly strong contribution from a second mode, however, whose characteristic energy does not correspond to any of the neutral SF6 fundamental vibrations in its ground electronic state. The resulting doublet pattern is evident when the bare ion is prepared with low internal energy content (i.e., using N2 carrier gas in a free jet or liquid nitrogen-cooling in a flowing afterglow) but is much better resolved in the spectrum of the SF6-.Ar complex. The infrared predissociation spectrum of SF6-.Ar consists of a strong band at 683(5) cm(-1), which we assign to the nu3 (t1u) fundamental, the same mode that yields the strong 948 cm(-1) infrared transition in neutral SF6. One qualitatively interesting aspect of the SF6- behavior is the simple structure of its photoelectron spectrum, which displays uncluttered, harmonic bands in an energy region where the neutral molecule contains about 2 eV of vibrational excitation. We explore this effect further in the c-C4F8- anion, which also presents a system that is calculated to undergo large, symmetrical distortion upon electron attachment to the neutral. The photoelectron spectrum of this species is dominated by a long, single vibrational progression, this time involving the symmetric ring-breathing mode. Like the SF6- case, the c-C4F8- spectrum is remarkably isolated and harmonic in spite of the significant internal excitation of a relatively complex molecular framework. Both these perfluorinated anions thus share the property that the symmetrical deformation of the structural backbone upon photodetachment launches very harmonic motion in photoelectron bands that occur far above their respective adiabatic electron affinities.  相似文献   

18.
Infrared predissociation (IRPD) spectra of Li(+)(CH(4))(1)Ar(n), n = 1-6, clusters are reported in the C-H stretching region from 2800 to 3100 cm(-1). The Li(+) electric field perturbs CH(4) lifting its tetrahedral symmetry and gives rise to multiple IR active modes. The observed bands arise from the totally symmetric vibrational mode, v(1), and the triple degenerate vibrational mode, v(3). Each band is shifted to lower frequency relative to the unperturbed CH(4) values. As the number of argon atoms is increased, the C-H red shift becomes less pronounced until the bands are essentially unchanged from n = 5 to n = 6. For n = 6, additional vibrational features were observed which suggested the presence of an additional conformer. By monitoring different photodissociation loss channels (loss of three Ar or loss of CH(4)), one conformer was uniquely associated with the CH(4) loss channel, with two bands at 2914 and 3017 cm(-1), values nearly identical to the neutral CH(4) gas-phase v(1) and v(3) frequencies. With supporting ab initio calculations, the two conformers were identified, both with a first solvent shell size of six. The major conformer had CH(4) in the first shell, while the conformer exclusively present in the CH(4) loss channel had six argons in the first shell and CH(4) in the second shell. This conformer is +11.89 kJ/mol higher in energy than the minimum energy conformer at the MP2/aug-cc-pVDZ level. B3LYP/6-31+G* level vibrational frequencies and MP2/aug-cc-pVDZ level single-point binding energies, D(e) (kJ/mol), are reported to support the interpretation of the experimental data.  相似文献   

19.
Laser-ablated Rh atoms react with C(2)H(2) upon co-condensation in excess argon and neon to form the insertion product HRhCCH, the alkyne RhCCH, the vinylidene RhCCH(2), and the metallacycle complex Rh-η(2)-(C(2)H(2)). These species are identified through (13)C(2)H(2), C(2)D(2), and mixed C(2)HD isotopic substitutions and density functional theory isotopic frequency calculations. The HRhCCH molecule is characterized by the CH stretching mode at 3306.2 cm(-1) (Ar) and 3310.9 cm(-1) (Ne), the Rh-H stretching mode at 2090.8 cm(-1) (Ar) and 2111.0 cm(-1) (Ne), and two CCH deformation modes at 584.3 and 573.3 cm(-1) (Ar) and 587.1 and 580.3 cm(-1) (Ne). The absorptions for the vinylidene RhCCH(2) complex are observed at 3150.9 (Ar), 3147.2 (Ne) (CH stretching), 1690.1 (Ar), 1694.3 (Ne) (CC stretching), and 804.9 (Ar), 810.5 cm(-1) (Ne) (CCH deformation). The metallacycle Rh-η(2)-(C(2)H(2)) complex is also identified through CC stretching and CCH deformation modes. The insertion reaction of ground Rh atom to the C-H bond is spontaneous on the basis of the growth of HRhCCH absorptions upon annealing in both solid neon and argon. Here, we show that atomic Rh can convert acetylene to the simple Rh vinylidene complex, analogous to that found for ligand-supported Rh complexes.  相似文献   

20.
The dynamics of electron solvation following excitation of the charge-transfer-to-solvent precursor state in iodide-doped methanol clusters, I(-)(CH(3)OH)(n = 4-11), are studied with time-resolved photoelectron imaging. This excitation produces a I···(CH(3)OH)(n)(-) cluster that is unstable with respect to electron autodetachment and whose autodetachment lifetime increases monotonically from ~800 fs to 85 ps as n increases from 4 to 11. The vertical detachment energy (VDE) and width of the excited state feature in the photoelectron spectrum show complex time dependence during the lifetime of this state. The VDE decreases over the first 100-400 fs, then rises exponentially to a maximum with a ~1 ps time constant, and finally decreases by as much as 180 meV with timescales of 3-20 ps. The early dynamics are associated with electron transfer from the iodide to the methanol cluster, while the longer-time changes in VDE are attributed to solvent reordering, possibly in conjunction with ejection of neutral iodine from the cluster. Changes in the observed width of the spectrum largely follow those of the VDEs; the dynamics of both are attributed to the major rearrangement of the solvent cluster during relaxation. The relaxation dynamics are interpreted as a reorientation of at least one methanol molecule and the disruption and formation of the solvent network in order to accommodate the excess charge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号