首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 59 毫秒
1.
设计并用分子束外延技术生长了InP基InGaAs/AlAs体系RTD材料,采用传统湿法腐蚀、光学接触式光刻、金属剥离、台面隔离和空气桥互连工艺,研制出了具有优良负阻特性和较高阻性截止频率的InP基RTD单管,器件正向PVCR为17.5,反向PVCR为28,峰值电流密度为56kA/cm^2,采用RNC电路模型进行数据拟合后得到阻性截止频率为82.8GHz,实验为今后更高性能RTD单管的研制,以及RTD与其他高速高频三端器件单片集成电路的设计与研制奠定了基础。  相似文献   

2.
谐振隧穿二极管(RTD)具有高频、低功耗、负阻、双稳态、自锁等优点,在超高速数字电路领域具有非常好的应用前景.加之InP材料固有的优越特性,使得InP基谐振隧穿器件成为目前研究的重点.研究并试制了InP基RTD实验样品,对其直流特性进行了测试分析,器件的最大电流峰谷比(PVCR)达到了17.8.  相似文献   

3.
硅基隧穿二极管   总被引:1,自引:0,他引:1  
隧穿二极管是一种很有前途的基于带隙工程的异质结构量子器件,其电流电压(I-V)曲线中所呈现的微分负阻特性能够用于开发多种不同的电路功能。在最近的研究中,空穴型双势垒单势阱共振隧穿二极管得到了实现,为Si1-xGex/Si异质结隧穿二极管器件的改进和电路应用打下了良好的基础。  相似文献   

4.
共振隧穿二极管   总被引:9,自引:4,他引:5  
设计并研制出室温工作的共振隧穿二极管,室温电流峰谷比达到7.6:1,最高振荡频率为54GHz。本文对RTD的设计、研制过程、参数和特性测试进行了系统的分析和说明。  相似文献   

5.
利用分子束外延技术研制出InP基IhAs/In0.53Ga0.47As/AlAs共振隧穿二极管,其中势垒为10个单分子AlAs,势阱由8个单分子层In0.53Ga0.47As阱和4个单分子层InAs子阱组成.室温下峰值电流密度接近3kA/cm2,峰和谷的电流密度比率达到19.  相似文献   

6.
利用分子束外延技术研制出InP基IhAs/In0.53Ga0.47As/AlAs共振隧穿二极管,其中势垒为10个单分子AlAs,势阱由8个单分子层In0.53Ga0.47As阱和4个单分子层InAs子阱组成.室温下峰值电流密度接近3kA/cm2,峰和谷的电流密度比率达到19.  相似文献   

7.
谐振隧穿二极管的直流模型及其双稳态特性   总被引:4,自引:1,他引:3  
研制成的在常温下工作的谐振隧穿二极管 (RTD) ,峰谷比达到了 5∶ 1,最高振荡频率为 2 6 .3GHz.采用基于物理意义的电流 -电压方程 ,利用通用电路模拟软件 PSPICE,建立了其直流电路模型 ,模拟结果和实验数据吻合得很好 ;并以此为基础模拟出了以 RTD为驱动器 ,以电阻或 RTD本身为负载的电路双稳态特性 ,同时分析了 RTD器件双稳态特性 .  相似文献   

8.
研制成的在常温下工作的谐振隧穿二极管(RTD),峰谷比达到了5∶1,最高振荡频率为26.3GHz.采用基于物理意义的电流-电压方程,利用通用电路模拟软件PSPICE,建立了其直流电路模型,模拟结果和实验数据吻合得很好;并以此为基础模拟出了以RTD为驱动器,以电阻或RTD本身为负载的电路双稳态特性,同时分析了RTD器件双稳态特性.  相似文献   

9.
利用InP基共振隧穿二极管(RTD)和加载硅透镜的片上天线设计实现了超过1 THz的振荡器。采用Silvaco软件对RTD模型进行仿真研究,分析了不同发射区掺杂浓度、势垒层厚度、隔离层厚度以及势阱层厚度等对器件直流特性的影响规律。对研制的RTD器件直流特性测试显示:峰值电流密度Jp为359.2 kA/cm2,谷值电流密度Jv为135.8 kA/cm2,峰谷电流比PVCR为2.64,理论计算得到的器件最大射频输出功率和振荡频率(fmax)分别为1.71 mW和1.49 THz。利用透镜封装的形式对采用Bow-tie片上天线和RTD设计的太赫兹振荡器进行封装,测试得到振荡频率超过1 THz,输出功率为2.57μW,直流功耗为8.33 mW,是国内首次报道超过1 THz的振荡器。  相似文献   

10.
在InP衬底上采用感应耦合等离子体刻蚀技术制备了高性能的AlAs/In0.53Ga0.47As/InAs共振隧穿二极管.正向偏压下PVCR=7.57,Jp=39.08kA/cm2;反向偏压下PVCR=7.93,Jp=34.56kA/cm2.在未去除测试电极和引线等寄生参数影响下,面积为5μm×5μm的RTD的阻性截止频率为18.75GHz.最后对非对称的I-V特性进行了分析讨论.  相似文献   

11.
在6H-SiC衬底上,外延生长了AlGaN/GaN HEMT结构,设计并实现了高性能1mm AlGaN/GaN微波功率HEMT,外延材料利用金属有机物化学气相淀积技术生长.测试表明,该lmm栅宽器件栅长为0.8μm,输出电流密度达到1.16A/mm,跨导为241mS/mm,击穿电压>80V,特征频率达到20GHz,最大振荡频率为28GHz.5.4GHz连续波测试下功率增益为14.2dB,输出功率达4.1W,脉冲条件测试下功率增益为14.4dB,输出功率为5.2W,两端口阻抗特性显示了在微波应用中的良好潜力.  相似文献   

12.
在6H-SiC衬底上,外延生长了AlGaN/GaN HEMT结构,设计并实现了高性能1mm AlGaN/GaN微波功率HEMT,外延材料利用金属有机物化学气相淀积技术生长.测试表明,该lmm栅宽器件栅长为0.8μm,输出电流密度达到1.16A/mm,跨导为241mS/mm,击穿电压>80V,特征频率达到20GHz,最大振荡频率为28GHz.5.4GHz连续波测试下功率增益为14.2dB,输出功率达4.1W,脉冲条件测试下功率增益为14.4dB,输出功率为5.2W,两端口阻抗特性显示了在微波应用中的良好潜力.  相似文献   

13.
对GaAs基共振隧穿二极管(RTD)进行了研究,首先用分子束外延(MBE)方法进行AlAs/GaAs/InGaAs双势垒单势阱材料结构的生长.接着用常温光致荧光(PL)方法对结构材料进行了测试分析,其结果显示,较好的外延结构材料的PL谱线半峰宽达到62.6 nm.最后通过制成RTD器件对材料进行验证,器件测试结果表现出良好的直流特性.  相似文献   

14.
方东明  周勇  赵小林 《半导体学报》2006,27(8):1422-1425
利用MEMS技术制作了高性能的空芯螺线管型射频微机械电感.这种微电感采用铜线圈以减小线圈寄生电阻,整个微电感的面积是880μm×350μm,与平面螺旋型微电感相比,有效地节省了芯片面积.测试结果表明,微电感在较宽的工作频率范围内具有高Q值,微电感最大Q值为38(@6GHz),对应的电感量为1.82nH.  相似文献   

15.
高性能螺线管微电感的制作   总被引:1,自引:0,他引:1  
方东明  周勇  赵小林 《半导体学报》2006,27(8):1422-1425
利用MEMS技术制作了高性能的空芯螺线管型射频微机械电感.这种微电感采用铜线圈以减小线圈寄生电阻,整个微电感的面积是880μm×350μm,与平面螺旋型微电感相比,有效地节省了芯片面积.测试结果表明,微电感在较宽的工作频率范围内具有高Q值,微电感最大Q值为38(@6GHz),对应的电感量为1.82nH.  相似文献   

16.
平面型RTD及其MOBILE的设计与研制   总被引:1,自引:0,他引:1  
鉴于已报道的平面共振遂穿二极管(PRTD)存在的缺点,文中提出了一种新的平面RTD器件结构.以n GaAs代替半绝缘GaAs衬底,利用硼离子注入产生的非晶化作为RTD器件的电隔离,成功设计研制平面型RTD和由其构成的单-双稳转换逻辑单元,此种结构可适用于以输出端作为公用端的所有电路.  相似文献   

17.
郭维廉 《微纳电子技术》2006,43(8):366-371,392
介绍RTD器件几种主要器件结构及每种器件结构的优、缺点和应用前景,并介绍了RTD通用制造工艺和工艺中的关键问题。  相似文献   

18.
鉴于已报道的平面共振遂穿二极管(PRTD)存在的缺点,文中提出了一种新的平面RTD器件结构.以n+ GaAs代替半绝缘GaAs衬底,利用硼离子注入产生的非晶化作为RTD器件的电隔离,成功设计研制平面型RTD和由其构成的单-双稳转换逻辑单元,此种结构可适用于以输出端作为公用端的所有电路.  相似文献   

19.
InP MOSFET devices with a SiO2 dielectric layer have been fabricated on p-type and SI substrates. Surface mobilities in the range 250 to 750 cm2 V?1 s?1 have been routinely obtained from all substrates except those from one crystal of Fe-doped SI InP. Defect etching studies have revealed large prismatic dislocation loops in this crystal. A correlation between these observations is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号