共查询到19条相似文献,搜索用时 62 毫秒
1.
一种新的扭矩测量原理 总被引:11,自引:0,他引:11
本文提出一种新的用光空间调制与光空间滤波复合而成的,非接触扭矩测量原理.通过精密测量轴的扭转角,从而获得传动线路中的扭矩并对动态系统特性进行了整体描述. 相似文献
2.
3.
用单光纤光栅实现扭转与温度的双参量传感测量 总被引:5,自引:2,他引:5
采用一种新颖的扭梁设计结构 ,利用单光纤光栅成功地实现了扭转 (扭转角或扭矩 )与温度的双参量同时测量。该方法能够有效地解决扭转角与温度的交叉敏感问题 ,且光纤光栅波长的变化对扭转角、扭矩及扭应力 (力臂一定时 )均呈线性关系。在 - 40°~ +32°范围内 ,扭转角、扭矩和温度的传感灵敏度分别达到 0 .19nm (°)、3.2 9nm Nm和 0 .0 3nm ℃ ,波长线性调谐范围可达 14.2 0nm。 相似文献
4.
绝对编码光栅的相位细分及其在位移测量中的应用 总被引:1,自引:1,他引:1
提出通过光栅条纹相位的精密测量,获取光栅高精度位移信息的方法。具体方法是对光栅图像采用多码道设计,用CCD二维图像传感器获取测量段光栅图像多码道信息。对最低码道图形的周期函数序列进行傅里叶变换、基频滤波和逆傅里叶变换获得光栅截断相位分布,其余码道信息提供相位展开的级次,以此获得测量段光栅的绝对相位分布。用光刻的手段制作了实用的绝对编码光栅,基元码道的尺寸是:27.36μm用于明条纹,27.36μm用于暗条纹,最小基元码道空间周期为54.72μm,光栅长度为14008.32μm。在步长近似3μm的位移测试中,与比对的标准仪器记录值比较,标准偏差为0.2057μm,精度在亚微米量级。重复性实验表明,位置测试的稳定性为0.09μm(标准差),得到600倍以上细分的分辨力。 相似文献
5.
6.
7.
9.
10.
叠栅条纹相位差测量是光栅位移测量中的关键技术,在两块光栅相对运动过程中,叠栅条纹信号的频率会因光栅夹角误差的存在而发生偏移,采用传统多相位快速傅里叶变换(MPFFT)算法计算任意时刻叠栅条纹相位值会产生测量误差,导致相位差测量不准确。为了减少频偏所产生的相位测量误差,提出了一种校正MPFFT相位测量算法,推导出了基于相位差校正法的MPFFT谱校正模型。仿真结果表明,在无噪声情况下,当光栅夹角误差为0.1°时,信号的最大频率偏移量约为4.19kHz,传统MPFFT相位测量误差大于100°,经相位校正后,相位测量误差小于0.2°,相位差测量误差小于0.004°;在高斯噪声和谐波干扰情况下,相位差测量误差小于0.2°,当取栅距为20μm时,相位差测量误差所产生的位移测量误差小于0.0111μm,为光栅位移纳米级测量提供了参考。 相似文献
11.
传统的光束漂移量测量系统利用近、远场测量设备分别测量光束的平漂量和角漂量,结构复杂、实时性低。散焦光栅焦平面处正、负一级衍射斑的位置变化可同时反映光束的平漂量和角漂量,为验证该理论、搭建简化的测量系统需要对光路设计进行仿真。基于散焦光栅的成像机理,利用Matlab软件构建了光束通过散焦光栅的成像模型,仿真结果与理论分析一致;最后对光栅和透镜等不同光路设计参数与最大漂移量测量幅值的关系进行了模拟。结果表明,在成像单元约1 cm2、短焦透镜焦距约12 cm的条件下,为实现漂移量测量精度和可测幅度的最大化,散焦光栅需要离轴15 mm,散焦光栅与短焦透镜的焦距比为6。 相似文献
12.
13.
14.
15.
16.
介绍了基于几何莫尔条纹原理和衍射干涉原理的两种光栅精密位移测量系统及各自的特点。综述了国内外对光栅干涉式精密位移测量系统的研究进展,总结了系统存在的关键问题及发展趋势。光栅干涉式精密位移测量系统的优点是对环境要求小,测量分辨率和精度较高,结构紧凑,成本低。该系统需要解决的问题包括提高光栅以及光学元器件制造和安装精度;寻求一种更高精度的检测手段对光栅位移测量系统进行标定等。光栅干涉式精密位移测量系统的发展方向为更高测量分辨率和精度,大量程、多维度测量以及尺寸小巧。该系统在现代工业加工精密制造领域将具有更广阔的应用前景。 相似文献
17.
18.
采用国内首次研制出的2 000线/mm的自支撑透射光栅配上背照射软X光CCD(charge coupled device)组成了高谱分辨透射光栅谱仪。通过实验标定和理论模型计算相结合得到了高线对透射光栅的绝对衍射效率;同时建立了透射光栅谱仪测谱解谱方法,编制了相应的解谱程序。在“神光”激光装置上利用该谱仪通过激光打靶实验获得了金腔靶注入口发射的X光能谱定量实验结果,实验结果表明,该谱仪测谱范围在高能区达到6 000eV,谱分辨达到0.1nm,能够清晰地分辨金等离子体M带三峰分布X光谱结构。 相似文献