首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Metal promoted zirconia-based oxide sorbents, such as Pt–ZrO2/Al2O3 for NO x have been investigated. To clarify the role of the catalyst component, sorption of NO and NO2 was compared using the samples with and without Pt. The catalytic oxidation of NO to NO2 and successively to nitrate ions is an important role for the Pt catalyst. The experimental results indicate that a high-temperature calcination is essential to remove residual Cl from Pt–ZrO2–Al2O3 prepared from H2PtCl6 in order to provide more active NO x sorption sites. Of M–ZrO2–Al2O3 samples investigated, ruthenium as well as Pt demonstrated relatively good performance as a catalyst component in the sorbent. The FT-IR spectra after sorption of NO and NO2 demonstrated a strong band attributed to stored nitrate ions. The Pt catalyst was more resistant to sulfur poisoning than a base metal catalyst. However, the NO x sorptive capacities of the Pt–ZrO2/Al2O3 sorbents were expected to be deteriorated in dilute SO2 as far as observed from FT-IR spectra.  相似文献   

2.
The conversion of cyclohexane dehydrogenation over Pt–Dy/Al2O3 has been studied with a pulsed microcatalytic reactor. Two interesting experiments utilizing CS2 and thiophene poisoning Pt/Al2O3 and Pt–Dy/Al2O3 for cyclohexane dehydrogenation are shown and the reaction mechanism is described. The kinetic parameters of cyclohexane dehydrogenation have been calculated. Correlation of the catalytic behavior with the properties of active sites is also discussed.  相似文献   

3.
Four lithium metal precursors (LiNO3, CH3COOLi, LiOH, LiCl) have been used as promoters in Pt–Sn/Al2O3 catalysts to improve activity, selectivity and stability in a modeln-decane dehydrogenation reaction. Acidity, TPR and TPCO measurements have shown that the precursors affect the acid site distribution in the support, modify the reducibility and dispersity of Pt–Sn active species, coke lay-over patterns, stability and also selectivity for formation of monoolefins in the dehydrogenation ofn-decane.  相似文献   

4.
Chromium(III)-phosphate reactions are expected to be important in managing high-level radioactive wastes stored in tanks at many DOE sites. Extensive studies on the solubility of amorphous Cr(III) solids in a wide range of pH (2.8–14) and phosphate concentrations (10–4 to 1.0 m) at room temperature (22±2)°C were carried out to obtain reliable thermodynamic data for important Cr(III)-phosphate reactions. A combination of techniques (XRD, XANES, EXAFS, Raman spectroscopy, total chemical composition, and thermodynamic analyses of solubility data) was used to characterize solid and aqueous species. Contrary to the data recently reported in the literature,(1) only a limited number of aqueous species [Cr(OH)3H2PO4, Cr(OH)3(H2PO4)2–2), and Cr(OH)3HPO2–4] with up to about four orders of magnitude lower values for the formation constants of these species are required to explain Cr(III)-phosphate reactions in a wide range of pH and phosphate concentrations. The log Ko values of reactions involving these species [Cr(OH)3(aq)+H2PO4⇌Cr(OH)3H2PO4; Cr(OH)3(aq)+2H2PO4⇌Cr(OH)3(H2PO4)2–2; Cr(OH)3(aq)+HPO2–4⇌Cr(OH)3HPO2–4] were found to be 2.78±0.3, 3.48±0.3, and 1.97±0.3, respectively.  相似文献   

5.
Fe2O3/SiO2 nanocomposites based on fumed silica A-300 (SBET = 337 m2/g) with iron oxide deposits at different content were synthesized using Fe(III) acetylacetonate (Fe(acac)3) dissolved in isopropyl alcohol or carbon tetrachloride for impregnation of the nanosilica powder at different amounts of Fe(acac)3 then oxidized in air at 400–900 °C. Samples with Fe(acac)3 adsorbed onto nanosilica and samples with Fe2O3/SiO2 including 6–17 wt% of Fe2O3 were investigated using XRD, XPS, TG/DTA, TPD MS, FTIR, AFM, nitrogen adsorption, Mössbauer spectroscopy, and quantum chemistry methods. The structural characteristics and phase composition of Fe2O3 deposits depend on reaction conditions, solvent type, content of grafted iron oxide, and post-reaction treatments. The iron oxide deposits on A-300 (impregnated by the Fe(acac)3 solution in isopropanol) treated at 500–600 °C include several phases characterized by different nanoparticle size distributions; however, in the case of impregnation of A-300 by the Fe(acac)3 solution in carbon tetrachloride only α-Fe2O3 phase is formed in addition to amorphous Fe2O3. The Fe2O3/SiO2 materials remain loose (similar to the A-300 matrix) at the bulk density of 0.12–0.15 g/cm3 and SBET = 265–310 m2/g.  相似文献   

6.
Promoting effects of Mg in heterogeneous Mo/HBeta–Al2O3 catalyst have been carefully studied for cross-metathesis of ethene and butene-2 to propene. The catalyst shows good stability with Mg content in the range of 1–2 wt%. Such effect may be attributed to the elimination of weak acid sites through introduction of Mg which suppresses the side olefin oligomerization reaction, as evidenced from NH3-TPD and 1H MAS NMR results. Addition of more Mg content to 3 wt% may change the state and reducibility of Mo species, as indicated from the UV–vis, UV-Raman and H2-TPR measurements. The increasing difficulty for the reduction of Mo(VI) species is closely related with the poor performance of 3 wt% Mg–4Mo/HBeta–30% Al2O3 catalyst in the metathesis reaction.  相似文献   

7.
应用原位漫反射红外-质谱联用、程序升温和暂态响应技术研究了CuO/Al2O3催化剂表面酸性及其反应性能. 实验结果表明, CuO/Al2O3催化剂表面呈Lewis酸性, 硫化不仅可增强CuO/Al2O3催化剂的Lewis酸性, 而且可产生新的Brønsted酸性位; 吸附于Lewis酸性位的NH3具有选择性催化还原(SCR)活性. 而在硫化样Cu8(400S)中Lewis和Brønsted酸性位同时存在的情况下, 吸附于Lewis和Brønsted酸性位的氨均具有SCR活性, 且后者较前者弱; CuO/Al2O3催化剂上的SCR反应遵循Eley-Rideal机理, 即SCR反应发生于吸附态NH3与气相NO之间.  相似文献   

8.
In this work we report about a new rare-earth oxoborate β-Dy2B4O9 synthesized under high-pressure/high-temperature conditions from Dy2O3 and boron oxide B2O3 in a B2O3/Na2O2 flux with a walker-type multianvil apparatus at 8 GPa and 1000°C. Single crystal X-ray structure determination of β-Dy2B4O9 revealed: , a=616.2(1) pm, b=642.8(1) pm, c=748.5(1) pm, α=102.54(1)°, β=97.08(1)°, γ=102.45(1)°, Z=2, R1=0.0151, wR2=0.0475 (all data). The compound exhibits a new structure type which is built up from bands of linked BO3- (Δ) and tetrahedral BO4-groups (□). The Dy3+-cations are positioned in the voids between the bands. According to the conception of fundamental building blocks β-Dy2B4O9 can be classified with the notation 2Δ6□:Δ3□=4□=3□Δ. Furthermore we report about temperature-resolved in situ powder diffraction measurements and IR-spectroscopic investigations on β-Dy2B4O9.  相似文献   

9.
Li2O–Cr2O3–GeO2–P2O5 based glasses were synthesized by a conventional melt-quenching method and successfully converted into glass-ceramics through heat treatment. Experimental results of DTA, XRD, ac impedance techniques and FESEM indicated that Li1.4Cr0.4Ge1.6(PO4)3 glass-ceramics treated at 900 °C for 12 h in the Li1 + xCrxGe2 − x(PO4)3 (x = 0–0.8) system exhibited the best glass stability against crystallization and the highest ambient conductivity value of 6.81 × 10−4 S/cm with an activation energy as low as 26.9 kJ/mol. In addition, the Li1.4Cr0.4Ge1.6(PO4)3 glass-ceramics displayed good chemical stability against lithium metal at room temperature. The good thermal and chemical stability, excellent conducting property, easy preparation and low cost make it promising to be used as solid-state electrolytes for all-solid-state lithium batteries.  相似文献   

10.
Mesoporous YSZ–γ-Al2O3 membranes were coated on α-Al2O3 (Ø2 mm) tube by dipping the α-Al2O3 support tube into mixed sol consists of nano-size YSZ and bohemite particles followed by drying and calcination at 600 °C. Addition of bohemite in YSZ sol helped a good adhesion and uniform coating of the membrane film onto α-Al2O3 support. The quality of the mesoporous YSZ–γ-Al2O3 membranes was evaluated by the gas permeability experiments. The number of defects was minimized when the γ-Al2O3 content became more than 40%. Addition of γ-Al2O3 inhibited the crystal growth of YSZ, sintering shrinkage and distortion stress. Increase of calcination temperature and time results in the increase of pore size and N2 permeance. A hydrogen perm-selective membrane was prepared by filling palladium into the nano-pores of YSZ–γ-Al2O3 layer by vacuum-assisted electroless plating. Crystal growth of palladium was observed by thermal annealing of the membrane at 600 °C for 40 h. The Pd–YSZ–γ-Al2O3 composite membrane revealed improved thermal stability allowing long-term operation at elevated temperature (>500 °C). This has been attributed to the improved fracture toughness of YSZ–γ-Al2O3 layer and matching of thermal expansion coefficient between palladium and YSZ. Although fracture of the membrane did not occur, decline of H2 flux was observed when the membrane was exposed in 600 °C. This has been attributed to the agglomeration of palladium particles by crystal growth and dense packing into the pore networks of YSZ–γ-Al2O3 by elevation of temperature.  相似文献   

11.
Conversion ofn-hexane has been applied as a test reaction to study differences between the series of Pt−Sn/γ-Al2O3 catalysts obtainedvia different methods of preparation. Preliminary results of catalytic experiments have been compared with some changes occurring on the catalysts surfaces as the results of the preparation technique applied. It has been found that catalysts with the second metal (Sn) introduced to the support by the coprecipitation technique were much more stable in comparison to the catalysts where the tin component has been added by the impregnation method, however, we have not observed large differences in catalytic activity.  相似文献   

12.
Mechanical activation (MA) of the LiOH+V2O5 and Li2CO3+V2O5 mixtures followed by brief heating at 673 K was used to prepare dispersed Li1+xV3O8. It was shown that structural transformations during MA are accompanied by reduction processes. EPR spectra of Li1+xV3O8 are attributed to vanadyl VO2+ ions with weak exchange interaction. The interaction of localized electrons (V4+ ions) with electron gas (delocalized electrons), which is exhibited through the dependence of EPR line width of vanadium ions versus measurement temperature (C–S–C relaxation), is revealed. It is shown that C–S–C relaxation is different for intermediate and final products. The properties of mechanochemically prepared Li1+xV3O8 are compared with those of HT-Li1+xV3O8, obtained by conventional solid state reaction. Mechanochemically prepared Li1+xV3O8 is characterized by a similar amount of vanadium ions, producing electron gas, but a higher specific surface area.  相似文献   

13.
The structure, conductivity and water uptake of the oxygen-deficient perovskite-type compound Ba4Ca2Ta2O11 have been investigated. Ba4Ca2Ta2O11 crystallizes in the cryolite structure (cubic, Fm3m SG) with a = 8.4508(2) Å, under dry air. The compound can be partially hydrated up to a maximum water content of approximately 0.52 mol H2O per mol Ba4Ca2Ta2O11. In moist air, the structure symmetry becomes monoclinic (C2/m) and the temperature dependence of total conductivity shows a different behavior because of changes in transport mechanism. Three regions can be observed as a function of temperature. For the low temperature range 200–400 °C, the protonic conduction is prevailing with an activation energy EA = 0.85 eV. In the intermediate temperature range (400–600 °C), O2− anionic and protonic conductions are mixed with an activation energy EA = 0.45 eV and in the third region, for temperatures above 600 °C, O2−conduction is prevailing with an activation energy EA = 0.85 eV.  相似文献   

14.
A facile method has been developed to synthesize Al2O3-coated LiNi0.8Co0.2O2 cathode materials. The sample was characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and energy dispersive analysis of X-rays (EDAX). Electrochemical tests show that the cycling stability of LiNi0.8Co0.2O2 at room temperature is effectively improved by Al2O3 coating. The differential scanning calorimetry (DSC) and high temperature (60 °C) cycling tests indicate that Al2O3 coating can also improve the thermal stability of LiNi0.8Co0.2O2, which is attributed to that the coating layer can protect the LiNi0.8Co0.2O2 particles from reacting with the electrolyte.  相似文献   

15.
Ab initio molecular orbital and density functional theory calculations on X2Y3 (X = B, Al,Ga; Y = O,S) indicate a bent structure withC 2v symmetry to be the preferred arrangement for B2 O3, B2 S3 and Al2S3. In contrast, the linear isomer is favoured for Al2 O3 and Ga2 O3. These are in agreement with the experimentally observed structures. The electronegativity difference between X and Y, the MO patterns and the ionic nature of the bonding explain variations in the molecular structure. The results from the two theoretical approaches (MP2/6-31G* and Becke3LYP/6-311 +G* level) are comparable.  相似文献   

16.
The vapor-phase catalytic alkylation of phenol with dimethyl carbonate over different AlPO4 (Al/P=1), Al2O3 and AlPO4-Al2O3 (5–25 wt.% Al2O3) catalysts produces anisole (O-alkylation) as the major reaction product althougho-cresol (C-alkylation) and methylanisoles were also found. The reaction is first order in phenol while O-and C-alkylation follow parallel processes. As compared with methanol, DMC is far more effective as a methylating agent, and the methylation proceeds at a lower temperature and with higher O-alkylation selectivity.  相似文献   

17.
Orthorhombic Al2O3-rich aluminoborate is an important ceramic material for which two slightly different compositions have been assumed: Al5BO9 (5Al2O3:B2O3) and Al18B4O33 (9Al2O3:2B2O3). The formula Al18B4O33 (=Al4.91B1.09O9) was derived from results of chemical analyses when crystal structure data were not yet available. Subsequent structural investigations indicated Al5BO9 composition. Nevertheless, Al18B4O33 was still accepted as the correct stoichiometry assuming that additional B replaces 9% Al.Powder samples of both compositions and ones with excess boron were prepared by solid state reactions between α-Al2O3 and B2O3/H3BO3 at temperatures above 1100 °C and single-crystals were grown from flux at 1100 and 1550 °C. Products were investigated by single-crystal and powder XRD, 11B and 27Al solid-state MAS-NMR, Raman and FTIR spectroscopy as well as Laser-ablation ICP-MS. No indication of the predicted 9% B→Al substitution was found. LA ICP-MS indicated 12.36(27) wt% B2O3 corresponding to Al4.97B1.03O9. Hence, the suggested Al18B4O33 stoichiometry can be excluded for all synthesized samples. A very low amount of Al vacancies at a five-fold coordinated site are likely, charge balanced by an additional nearby three-fold coordinated B site. All evidences indicate that the title compound should be reported as Al5−xB1+xO9 with x<0.038(6), which is close to Al5BO9.  相似文献   

18.
The bulk superconducting YCa2Cu3O7−δ compounds are prepared at an ordinary pressure of oxygen by conventional solid-state reaction method. The formation of sample is tested by means of XRD and is studied for their ac susceptibility below room temperature up to 77.5 K. The samples are found single-phase orthorhombic structure and found superconducting at 83.5 K. It is shown that the analysis is consistent with published data on YBa2Cu3O7−δ oxide superconductor.  相似文献   

19.
The phase relations in the system In2O3–TiO2–MgO at 1100 and 1350°C are determined by a classical quenching method. In this system, there are four pseudobinary compounds, In2TiO5, MgTi2O5 (pseudobrookite type), MgTiO3 (ilmenite type), and Mg2TiO4 (spinel type) at 1100°C. At 1350°C, in addition to these compounds there exist a spinel-type solid solution Mg2−xIn2xTi1−xO4 (0≤x≤1) and a compound In6Ti6MgO22 with lattice constants a=5.9236(7) Å, b=3.3862(4) Å, c=6.3609(7) Å, β=108.15(1)°, and q=0.369, which is isostructural with the monoclinic In3Ti2FeO10 in the system In2O3–TiO2–MgO. The relation between the lattice constants of the spinel phase and the composition nearly satisfies Vegard's law. In6Ti6MgO22 extends a solid solution range to In20Ti17Mg3O67 with lattice constants of a=5.9230(5) Å, b=3.3823(3) Å, c=6.3698(6) Å, β=108.10(5)°, and q=0.360. The distributions of constituent cations in the solid solutions are discussed in terms of their ionic radius and site preference effect.  相似文献   

20.
以自制不对称双子季铵盐表面活性剂为模板, 在水热合成体系中控制合成系列硅铝比纳米薄层ZSM-5分子筛.采用X射线衍射(XRD)、N2吸附-脱附、X射线荧光光谱(XRF)、扫描电镜(SEM)和27Al魔角旋转核磁共振(27Al MAS-NMR)对合成的样品进行了表征. 详细研究了晶化温度、晶化时间、结构导向剂(SDA)用量、碱度等对合成的影响和纳米薄层ZSM-5分子筛的形成过程. 结果表明: 分子筛硅铝比越高, 结构导向剂用量越大, 所需的晶化时间越短; 晶化温度越高, 晶化时间越短; 且不同硅铝比纳米薄层ZSM-5分子筛的形貌规整度、比表面积和介孔/微孔孔容比例随着硅铝比而变化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号