首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An ab initio interpolated potential energy surface (PES) for the F + CH4 reactive system has been constructed using the interpolation method of Collins and co-workers. The ab initio calculations have been performed using second-order M?ller-Plesset (MP2) perturbation theory to build the initial PES. Scaling all correlation (SAC) methodology has been employed to improve the ab initio calculations and to construct a dual-level PES. Using this PES, a detailed quasiclassical trajectory study of integral and differential cross sections, product rovibrational populations and internal energy distributions has been carried out for the F + CH4 and F + CD4 reactions and the theoretical results have been compared with the available experimental data.  相似文献   

2.
An ab initio interpolated potential energy surface (PES) for the Cl+CH(4) reactive system has been constructed using the interpolation method of Collins and co-workers [J. Chem. Phys. 102, 5647 (1995); 108, 8302 (1998); 111, 816 (1999); Theor. Chem. Acc. 108, 313 (2002)]. The ab initio calculations have been performed using quadratic configuration interaction with single and double excitation theory to build the PES. A simple scaling all correlation technique has been used to obtain a PES which yields a barrier height and reaction energy in good agreement with high level ab initio calculations and experimental measurements. Using these interpolated PESs, a detailed quasiclassical trajectory study of integral and differential cross sections, product rovibrational populations, and internal energy distributions has been carried out for the Cl+CH(4) and Cl+CD(4) reactions, and the theoretical results have been compared with the available experimental data. It has been shown that the calculated total reaction cross sections versus collision energy for the Cl+CH(4) and Cl+CD(4) reactions is very sensitive to the barrier height. Besides, due to the zero-point energy (ZPE) leakage of the CH(4) molecule to the reaction coordinate in the quasiclassical trajectory (QCT) calculations, the reaction threshold falls below the barrier height of the PES. The ZPE leakage leads to CH(3) and HCl coproducts with internal energy below its corresponding ZPEs. We have shown that a Gaussian binning (GB) analysis of the trajectories yields excitation functions in somehow better agreement with the experimental determinations. The HCl(v'=0) and DCl(v'=0) rotational distributions are as well very sensitive to the ZPE problem. The GB correction narrows and shifts the rotational distributions to lower values of the rotational quantum numbers. However, the present QCT rotational distributions are still hotter than the experimental distributions. In both reactions the angular distributions shift from backward peaked to sideways peaked as collision energy increases, as seen in the experiments and other theoretical calculations.  相似文献   

3.
Three-dimensional time-dependent quantum wave packet calculation was performed to study the reaction dynamics of Cl+H2(D2) on two potential energy surfaces (CW PESs). The first CW PES is with spin-orbit correction; the second is without spin-orbit correction. The integral cross-section and reaction probability as a function of collision energy are calculated in the collision energy range of 0.1 eV to 1.4 eV. For reaction of Cl with D2, the reaction section with spin-orbit correction has a shift toward the high energy because the barrier height increases. As for the reaction of Cl with H2 at low collision energy, it is more reactive on the PES with spin-orbit correction than on the low barrier height PES without spin-orbit correction, due to the tunnel effect for the reaction of the Cl with H2. When the collision energy is higher than 0.7 eV, the reactivity on the low barrier height PES is larger than that on the high barrier height PES. It is believed that the barrier height plays a very important role in the reactivity of Cl with (H2, D2). For the Cl+H2 reaction the barrier width is also very important because of the tunneling effect.  相似文献   

4.
A dynamics study [cross section and microscopic mechanism versus collision energy (E(T))] of the reaction O+ + H2 --> OH+ + H, which plays an important role in Earth's ionosphere and interstellar chemistry, was conducted using the quasiclassical trajectory method, employing an analytical potential energy surface (PES) recently derived by our group [R. Martinez et al., J. Chem. Phys. 120, 4705 (2004)]. Experimental excitation functions for the title reaction, as well as its isotopic variants with D2 and HD, were near-quantitatively reproduced in the calculations in the very broad collision energy range explored (E(T) = 0.01-6.0 eV). Intramolecular and intermolecular isotopic effects were also examined, yielding data in good agreement with experimental results. The reaction occurs via two microscopic mechanisms (direct and nondirect abstraction). The results were satisfactorily interpreted based on the reaction probability and the maximum impact parameter dependences with E(T), and considering the influence of the collinear [OHH]+ absolute minimum of the PES on the evolution from reactants to products. The agreement between theory and experiment suggests that the reaction mainly occurs through the lowest energy PES and nonadiabatic processes are not very important in the wide collision energy range analyzed. Hence, the PES used to describe this reaction is suitable for both kinetics and dynamics studies.  相似文献   

5.
We have performed quantum mechanical (QM) dynamics calculations within the independent-state approximation with new benchmark triplet A" and A' surfaces [B. Ramachandran et al., J. Chem. Phys. 119, 9590 (2003)] for the rovibronic state-to-state measurements of the reaction O(3P)+HCl(v=2,j=1,6,9)-->OH(v'j')+Cl(2P) [Zhang et al., J. Chem. Phys. 94, 2704 (1991)]. The QM and experimental rotational distributions peak at similar OH(j') levels, but the QM distributions are significantly narrower than the measurements and previous quasiclassical dynamics studies. The OH(low j) populations observed in the measurements are nearly absent in the QM results. We have also performed quasiclassical trajectory with histogram binning (QCT-HB) calculations on these same benchmark surfaces. The QCT-HB rotational distributions, which are qualitatively consistent with measurements and classical dynamics studies using other surfaces, are much broader than the QM results. Application of a Gaussian binning correction (QCT-GB) dramatically narrows and shifts the QCT-HB rotational distributions to be in very good agreement with the QM results. The large QCT-GB correction stems from the special shape of the joint distribution of the classical rotational/vibrational action of OH products. We have also performed QM and QCT calculations for the transition, O+HCl(v=0,T=300 K)-->OH(v'j')+Cl from threshold to approximately 130 kcal mol(-1) collision energy as a guide for possible future hyperthermal O-atom measurements. We find in general a mixed energy release into translation and rotation consistent with a late barrier to reaction. Angular distributions at high collision energy are forward peaked, consistent with a stripping mechanism. Direct collisional excitation channel cross sections, O+HCl(v=0,T=300 K)-->O+HCl(v'=1), in the same energy range are large, comparable in magnitude to the reactive channel cross sections. Although the (3)A" state dominates most collision processes, above approximately 48 kcal mol(-1), the (3)A' state plays the major role in collisional excitation.  相似文献   

6.
We report an ab initio-based global potential energy surface for H+CH4 that describes the abstraction and exchange reactions. The PES, which is invariant with respect to any permutation of five H atoms, is a fit to 20,728 electronic energies calculated using the partially spin-restricted coupled-cluster method (RCCSD(T)) with a moderately large basis (aug-cc-pVTZ). A first set of quasiclassical trajectory calculations using this PES are reported for the H+CD4-->HD+CD3 reaction at collision energies of 0.65 and 1.52 eV and are compared to experiment and recent direct dynamics calculations done with density functional theory.  相似文献   

7.
The endothermic proton transfer reaction, H2+(upsilon+)+He-->HeH+ + H(DeltaE=0.806 eV), is investigated over a broad range of reactant vibrational levels using high-resolution vacuum ultraviolet to prepare reactant ions either through excitation of autoionization resonances, or using the pulsed-field ionization-photoelectron-secondary ion coincidence (PFI-PESICO) approach. In the former case, the translational energy dependence of the integral reaction cross sections are measured for upsilon+=0-3 with high signal-to-noise using the guided-ion beam technique. PFI-PESICO cross sections are reported for upsilon+=1-15 and upsilon+=0-12 at center-of-mass collision energies of 0.6 and 3.1 eV, respectively. All ion reactant states selected by the PFI-PESICO scheme are in the N+=1 rotational level. The experimental cross sections are complemented with quasiclassical trajectory (QCT) calculations performed on the ab initio potential energy surface provided by Palmieri et al. [Mol. Phys. 98, 1839 (2000)]. The QCT cross sections are significantly lower than the experimental results near threshold, consistent with important contributions due to resonances observed in quantum scattering studies. At total energies above 2 eV, the QCT calculations are in excellent agreement with the present results. PFI-PESICO time-of-flight (TOF) measurements are also reported for upsilon+=3 and 4 at a collision energy of 0.6 eV. The velocity inverted TOF spectra are consistent with the prevalence of a spectator-stripping mechanism.  相似文献   

8.
In this work a simulation of the OHF(-) photodetachment spectrum is performed in a three-dimensional potential energy surface recently developed for OHF((3)A(")). The ground (2)A(') state potential of the anion is calculated in three dimensions based on accurate ab initio calculations and the reaction dynamics is studied using a wave packet method. The calculated spectrum shows a sequence of bands associated to vibrational HF(v) up to v=3. Each band is formed by a continuous spectrum and resonant structures. These resonances are associated to the OH-F channel well of the (3)A(") PES, in which fragmentation occurs through vibrational predissociation. Above the OH(v=0) threshold a new resonant pattern appears corresponding to heavy-light-heavy resonances. Special attention is paid to the assignment of these resonances because they mediate the reaction dynamics in the OH+F collision at low kinetic energies. The sequence of bands is in rather good agreement with that appearing in the experimental spectrum, especially at higher electron kinetic energies. At low kinetic energies, however, some other electronic states may contribute. The resonance structures might be washed out by the rotational average and the relatively low energy resolution of the experiment.  相似文献   

9.
A three-dimensional potential energy surface of the ground electronic state HArF is constructed from more than 2000 ab initio points at the multireference averaged quadratic coupled-cluster level employing an augmented large basis set. The calculations indicate that the linear HArF molecule is metastable with a barrier of 0.643 eV in the atomization (HArF --> H + Ar + F) channel and a barrier of 1.017 eV in the dissociation (HArF --> Ar + HF) channel. Variational calculations of low-lying predissociative resonances of both HArF and DArF are performed on the three-dimensional potential energy surface using a complex-symmetric Lanczos propagation method, which yields both positions and widths of the resonance states. The resonance lifetime generally decreases with energy, but strong mode selectivity exists. Reasonably good agreement with experiment confirms the accuracy of our potential. These calculations provide valuable information on the stability and dynamics of HArF/DArF in its ground electronic state.  相似文献   

10.
The effects of the reactant bending excitations in the F+CHD(3) reaction are investigated by crossed molecular beam experiments and quasiclassical trajectory (QCT) calculations using a high-quality ab initio potential energy surface. The collision energy (E(c)) dependence of the cross sections of the F+CHD(3)(v(b)=0,1) reactions for the correlated product pairs HF(v('))+CD(3)(v(2)=0,1) and DF(v('))+CHD(2)(v(4)=0,1) is obtained. Both experiment and theory show that the bending excitation activates the reaction at low E(c) and begins to inactivate at higher E(c). The experimental F+CHD(3)(v(b)=1) excitation functions display surprising peak features, especially for the HF(v(')=3)+CD(3)(v(2)=0,1) channels, indicating reactive resonances (quantum effects), which cannot be captured by quasiclassical calculations. The reactant state-specific QCT calculations predict that the v(5)(e) bending mode excitation is the most efficient to drive the reaction and the v(6)(e) and v(5)(e) modes enhance the DF and HF channels, respectively.  相似文献   

11.
The dynamics of the O(3P) + HCl reaction at hyperthermal collision energies were investigated using the quasiclassical trajectory method. Stationary points on the OClH 3A" and 3A' potential energy surfaces (PESs) were also examined. The lowest transition state leading to OCl + H on the 3A" surface is 2.26 eV above the reagents at the CCSD(T)/cc-pVTZ level of theory. This saddle point is bent and product-like. Direct dynamics calculations at the MP2/cc-pVTZ level of theory were used to investigate the excitation functions for OH + Cl, OCl + H, and O + H + Cl formation. OCl is formed mainly from small-impact-parameter collisions, and the OCl + H excitation function peaks around 5 eV, where it is similar in magnitude to the OH + Cl excitation function. The shape of the OCl + H excitation function is discussed, and features are identified that should be general to hyperthermal collision dynamics.  相似文献   

12.
Spin-orbit coupling (SOC) induced intersystem crossing (ISC) has long been believed to play a crucial role in determining the product distributions in the O(3P) + C2H4 reaction. In this paper, we present the first nonadiabatic dynamics study of the title reaction at two center-of-mass collision energies: 0.56 eV, which is barely above the H-atom abstraction barrier on the triplet surface, and 3.0 eV, which is in the hyperthermal regime. The calculations were performed using a quasiclassical trajectory surface hopping (TSH) method with the potential energy surface generated on the fly at the unrestricted B3LYP/6-31G(d,p) level of theory. To simplify our calculations, nonadiabatic transitions were only considered when the singlet surface intersects the triplet surface. At the crossing points, Landau-Zener transition probabilities were computed assuming a fixed spin-orbit coupling parameter, which was taken to be 70 cm-1 in most calculations. Comparison with a recent crossed molecular beam experiment at 0.56 eV collision energy shows qualitative agreement as to the primary product branching ratios, with the CH3 + CHO and H + CH2CHO channels accounting for over 70% of total product formation. However, our direct dynamics TSH calculations overestimate ISC so that the total triplet/singlet ratio is 25:75, compared to the observed 43:57. Smaller values of SOC reduce ISC, resulting in better agreement with the experimental product relative yields; we demonstrate that these smaller SOC values are close to being consistent with estimates based on CASSCF calculations. As the collision energy increases, ISC becomes much less important and at 3.0 eV, the triplet to singlet branching ratio is 71:29. As a result, the triplet products CH2 + CH2O, H + CH2CHO and OH + C2H3 dominate over the singlet products CH3 + CHO, H2 + CH2CO, etc.  相似文献   

13.
The H- and D-atom products from collisional quenching of OD A (2)Σ(+) by H(2) are characterized through Doppler spectroscopy using two-photon (2 (2)S ←← 1 (2)S) laser-induced fluorescence. Partial deuteration enables separation of the channel forming H + HOD products, which accounts for 75% of reactive quenching events, from the D + H(2)O product channel. The Doppler profiles, along with those reported previously for other isotopic variants, are transformed into product translational energy distributions using a robust fitting procedure based on discrete velocity basis functions. The product translational energy distribution for the H-atom channel is strongly peaked at low energy (below 0.5 eV) with a long tail extending to the energetic limit. By contrast, the D-atom channel exhibits a small peak at low translational energy with a distinctive secondary peak at higher translational energy (approximately 1.8 eV) before falling off to higher energy. In both cases, most of the available energy flows into internal excitation of the water products. Similar distributions are obtained upon reanalysis of D- and H-atom Doppler profiles, respectively, from reactive quenching of OH A (2)Σ(+) by D(2). The sum of the translational energy distributions for H- and D-atom channels is remarkably similar to that obtained for OH A (2)Σ(+) + H(2), where the two channels cannot be distinguished from one another. The product translational energy distributions from reactive quenching are compared with those obtained from a previous experiment performed at higher collision energy, quasiclassical trajectory calculations of the post-quenching dynamics, and a statistical model.  相似文献   

14.
The reaction dynamics of the F+H2O/D2O→HF/DF+OH/OD are investigated on an ac-curate potential energy surface (PES) using a quasi-classical trajectory method. For bothisotopomers, the hydrogen/deuterium abstraction reaction is dominated by a direct rebound mechanism over a very low “reactant-like” barrier, which leads to a vibrationally hot HF/DF product with an internally cold OH/OD companion. It is shown that the lowered reaction barrier on this PES, as suggested by high-level ab initio calculations, leads to a much better agreement with the experimental reaction cross section, but has little impact on the product state distributions and mode selectivity. Our results further indicate that rotational exci-tation of the H2O reactant leads to significant enhancement of the reactivity, suggesting a strong coupling with the reaction coordinate.  相似文献   

15.
A quasiclassical trajectory study of the state specific H+D(2)(upsilon = 0,j = 0) --> HD(upsilon' = 0,j' = 0) + D reaction at a collision energy of 1.85 eV (total energy of 2.04 eV) found that the scattering is governed by two unexpected and dominant new mechanisms, and not by direct recoil as is generally assumed. The new mechanisms involve strong interaction with the sloping potential around the conical intersection, an area of the potential energy surface not previously considered to have much effect upon reactive scattering. Initial investigations indicate that more than 50% of reactive scattering could be the result of these new mechanisms at this collision energy. Features in the corresponding quantum mechanical results can be attributed to these new (classical) reaction mechanisms.  相似文献   

16.
We report an analytical ab initio three degrees of freedom (3D) spin-orbit-correction surface for the entrance channel of the F + methane reaction obtained by fitting the differences between the spin-orbit (SO) and non-relativistic electronic ground state energies computed at the MRCI+Q/aug-cc-pVTZ level of theory. The 3D model surface is given in terms of the distance, R(C-F), and relative orientation, Euler angles ? and θ, of the reactants treating CH(4) as a rigid rotor. The full-dimensional (12D) "hybrid" SO-corrected potential energy surface (PES) is obtained from the 3D SO-correction surface and a 12D non-SO PES. The SO interaction has a significant effect in the entrance-channel van der Waals region, whereas the effect on the energy at the early saddle point is only ~5% of that at the reactant asymptote; thus, the SO correction increases the barrier height by ~122 cm(-1). The 12D quasiclassical trajectory calculations for the F + CH(4) and F + CHD(3) reactions show that the SO effects decrease the cross sections by a factor of 2-4 at low collision energies and the effects are less significant as the collision energy increases. The inclusion of the SO correction in the PES does not change the product state distributions.  相似文献   

17.
The product state-resolved dynamics of the reactions H+H(2)O/D(2)O-->OH/OD((2)Pi(Omega);v',N',f )+H(2)/HD have been explored at center-of-mass collision energies around 1.2, 1.4, and 2.5 eV. The experiments employ pulsed laser photolysis coupled with polarized Doppler-resolved laser induced fluorescence detection of the OH/OD radical products. The populations in the OH spin-orbit states at a collision energy of 1.2 eV have been determined for the H+H(2)O reaction, and for low rotational levels they are shown to deviate from the statistical limit. For the H+D(2)O reaction at the highest collision energy studied the OD((2)Pi(3/2),v'=0,N'=1,A') angular distributions show scattering over a wide range of angles with a preference towards the forward direction. The kinetic energy release distributions obtained at 2.5 eV also indicate that the HD coproducts are born with significantly more internal excitation than at 1.4 eV. The OD((2)Pi(3/2),v'=0,N'=1,A') angular and kinetic energy release distributions are almost identical to those of their spin-orbit excited OD((2)Pi(1/2),v'=0,N'=1,A') counterpart. The data are compared with previous experimental measurements at similar collision energies, and with the results of previously published quasiclassical trajectory and quantum mechanical calculations employing the most recently developed potential energy surface. Product OH/OD spin-orbit effects in the reaction are discussed with reference to simple models.  相似文献   

18.
Ca+HCl(upsilon,j) reactive collisions were studied for different rovibrational states of the HCl reactant using wave-packet calculations in reactant Jacobi coordinates. A recently proposed potential-energy surface was used with a barrier of approximately 0.4 eV followed by a deep well. The possibility of an insertion mechanism due to this last well has been analyzed and it was found that once the wave packet passes over the barrier most of it goes directly to CaCl+H products, which shows that the reaction dynamics is essentially direct. It was also found that there is no significant change in the reaction efficiency as a function of the initial HCl rovibrational state, because CaHCl at the barrier has an only little elongated HCl bond. Near the threshold for reaction with HCl(upsilon=0), however, the reaction shows significant steric effects for j > 0. In a complementary study, the infrared excitation from the Ca-HCl van der Waals well was simulated. The spectrum thus obtained shows several series of resonances which correspond to quasibound states correlating to excited HCl(upsilon) vibrations. The Ca-HCl binding energies of these quasibound states increase dramatically with upsilon, from 75 to 650 cm(-1), because the wave function spreads increasingly over larger HCl bond lengths. Thus it explores the region of the barrier saddle point and the deep insertion well. Although also the charge-transfer contribution increases with upsilon, the reaction probability for resonances of the upsilon=2 manifold, which are well above the reaction threshold, is still negligible. This explains the relatively long lifetimes of these upsilon=2 resonances. The reaction probability becomes significant at upsilon=3. Our simulations have shown that an experimental study of this type will allow a gradual spectroscopic probing of the barrier for the reaction.  相似文献   

19.
We present quasiclassical dynamics calculations of H2 and D2 scattering by the NiAl(110) surface using a recently proposed six-dimensional potential-energy surface (PES) obtained from density-functional theory calculations. The results for dissociative adsorption confirm several experimental predictions using (rotationally hot) D2 beams, namely, the existence of a dissociation barrier, the small isotopic effect, the importance of vibrational enhancement, and the existence of normal energy scaling. The latter conclusion shows that normal energy scaling is not necessarily associated with weak corrugated surfaces. The results for rotationally elastic and inelastic diffractions are also in reasonable agreement with experiment, but they show that many more diffractive transitions are responsible for the observed structures than previously assumed. This points to the validity of the PES recently proposed [P. Riviere, H. F. Busnengo, and F. Martin, J. Chem. Phys. 121, 751 (2004)] to describe dissociative adsorption as well as rotationally elastic and inelastic diffractions in the H2NiAl(110) system.  相似文献   

20.
We study the effect of overlapping resonances on the angular distributions of the reaction F+H2(v=0,j=0)-->HF(v=2,j=0)+H in the collision energy range from 5 to 65 meV, i.e., under the reaction barrier. Reactive scattering calculations were performed using the hyperquantization algorithm on the potential energy surface of Stark and Werner [J. Chem. Phys. 104, 6515 (1996)]. The positions of the Regge and complex energy poles are obtained by Pade reconstruction of the scattering matrix element. The Sturmian theory is invoked to relate the Regge and complex energy terms. For two interacting resonances, a two-sheet Riemann surface is contracted and inverted. The semiclassical complex angular momentum analysis is used to decompose the scattering amplitude into the direct and resonance contributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号