首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hongjingtian injection is made from Rhodiola wallichiana and used in the treatment of stable angina pectoris associated with coronary heart disease. In this study, the chemical constituents in Hongjingtian injection were comprehensively studied using liquid chromatography quadrupole time‐of‐flight mass spectrometry. A total of 49 compounds were identified or assumed, including 10 organic acids, nine phenylethanoids, 10 phenylpropanoids, two flavonoid glycosides, seven monoterpene glycosides, seven octylglycosides and four other types of compounds. The structures of seven compounds were confirmed by comparing their retention times, MS and UV spectra with the corresponding authentic standards. Amongst the 49 compounds, 35 were firstly found in R. wallichiana, while they have been reported in other species of the genus Rhodiola, including Rhodiola crenulata, Rhodiola sacra, Rhodiola rosea and Rhodiola kirilowii. The possible fragmentation pathways in the mass spectrometry of the major types of compounds are proposed and summarized. Our study demonstrates a rapid method for characterizing the chemical constituents present in the Hongjingtian injection, which could also be applied to the identification of chemical constituents in other TCM formulae containing R. wallichiana.  相似文献   

2.
3.
Ficus pandurata H. aerial roots are used as a traditional Chinese medicine for the treatment of uarthritis, indigestion and hyperuricemia. However, the bioactive constituents responsible for the pharmacological effects of F. pandurata H. are unclear. A simple and efficient HPLC/QTOF‐MS/MS (high‐performance liquid chromatography/electrospray ionization with quadrupole time‐of‐flight tandem mass spectrometry) method was established to detect and identify active constituents in the n‐butanol extract of F. pandurata H. aerial roots. Chemical constituents were separated and investigated by HPLC/QTOF‐MS/MS in the negative‐ion mode. Thirty‐seven compounds, including hydroxycinnamic acid derivatives, hydroxybenzoic acid derivatives, hydroquinone glycosides, flavonoid glycosides, etc., were identified or tentatively characterized in the n‐butanol extract of F. pandurata H. aerial roots by comparing the UV spectra, accurate mass spectra and fragmentation pathways and retrieving the reference literatures. Moreover, the flavonoid trisaccharides and hydroxybenzoic acid derivatives were tentatively characterized in F. pandurata H. for the first time. The analytical tool used here is very valuable in the rapid separation and identification of the multiple and minor constituents in the n‐butanol extract of F. pandurata H. aerial roots. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Radio‐frequency ionization (RFI) is a novel ionization method coupled to mass spectrometry (MS) for analysis of semi‐volatile and volatile organic compounds (VOCs). Despite the demonstrated capabilities of RFI MS for VOC analysis in both positive‐ and negative‐ion modes, mechanism of RFI is not completely understood. Improved understanding of the ion generation process in RFI should expand its utility in MS. Here, we studied the possibility of electron emission in RFI using both direct charged particle current measurements and indirect electron detection in a 9.4‐T Fourier transform‐ion cyclotron resonance (FT‐ICR) mass spectrometer. We show that RF‐generated electrons can be trapped in the ICR cell and, subsequently, reacted with neutral hexafluorobenzene (C6F6) molecules to generate C6F6●?. Intensity of observed C6F6●? species correlated with the number of trapped electrons and decreased as a function of electron quenching period. We also measured the electron attachment rate constant of hexafluorobenzene using a post‐RF electron trapping experiment. Measured electron attachment rate constant of hexafluorobenzene (1.19 (±0.53) × 10?9 cm3 molecule?1 s?1) for post‐RF FT‐ICR MS agreed with the previously reported value (1.60 (±0.30) × 10?9 cm3 molecule?1 s?1) from low‐pressure ICR MS measurements. Experimental results from direct and indirect electron measurements suggest that RFI process involves RF‐generated electrons under ultrahigh vacuum conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
The Yinchen–Zhizi herb pair (YZHP) consists of Herba Artemisiae Scopariae (Yinchen in Chinese) and Fructus Gardeniae (Zhizi in Chinese), and is mainly used to treat icteric hepatitis, itching skin and eczema. However, the bioactive constituents responsible for the pharmacological effects of YZHP are still unclear to date. In this work, a rapid and sensitive method was established to comprehensively study the constituents in YZHP extract by HPLC‐Q‐TOF MS/MS. The analysis was performed on an HPLC system equipped with an Agilent poroshell 120 EC‐C18 column (100 × 2.1 mm, 2.7 mm) working in a gradient elution program coupled to quadrupole‐time‐of‐flight mass spectrometry operating in the negative ion mode. As a result, a total of 46 compounds including 17 from Herba Artemisiae Scopariae and 36 from Fructus Gardeniae were detected and tentatively identified in YZHP extract by comparing the retention time and mass spectrometry and retrieving the reference literature. More importantly, a series of constituents, such as many iridoid glycosides, were reported for the first time in this formula. The HPLC‐Q‐TOF MS/MS method was developed and utilized successfully to identify the major constituents in YZHP extract and would be helpful for further metabolism and pharmacology research on YZHP. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Acorus tatarinowii Schott (ATS) is a well‐known traditional Chinese medicine (TCM) for the treatment of epilepsy, amnesia and insomnia. In this study, a methodology utilizing high‐performance liquid chromatography (HPLC) coupled with electrospray ionization quadrupole time‐of‐flight mass spectrometry (ESI‐QTOF‐MS/MS) was established for the separation and structural identification of the major chemical constituents in ATS for the first time. Overall, 46 major constituents including flavonoid glycosides, phenylpropane derivatives, amides and lignans were identified or tentatively characterized. Seven major constituents, including four phenylpropane derivatives and three lignans, were further quantified as marker substances, which showed good linearity within the test ranges. These results indicated that the developed quantitative method was linear, sensitive, and precise for quality control of ATS. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
A sensitive and reliable ultra high performance liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry method was established to separate and identify the chemical constituents of Zhi–Zi–Da–Huang decoction, a classic traditional Chinese medicine formula. The chromatographic separation was achieved on a Shim‐pack XR‐ODS C18 column (75  × 3.0 mm, 2.2 μm) using a gradient elution program. The detection was performed on a Waters Xevo G2 Q‐TOF mass spectrometer equipped with electrospray ionization source in both positive and negative modes. With the optimized conditions, a total of 82 compounds were identified or tentatively characterized. Of the 82 compounds, 21 compounds were identified by comparing the retention time and MS data with reference standards, the rest were characterized by analyzing MS data and retrieving the reference literature. In addition, 31 compounds were identified from Gardenia jasminoides Ellis, ten compounds were identified from Rheum palmatum L., 33 compounds were identified from Citrus aurantium L., and eight compounds were identified from Sojae Semen Praeparatum. Results indicated that iridoids, anthraquinones, flavonoids, isoflavonoids, coumarins, glycosides of crocetin, monoterpenoids, and organic acids were major constituents in Zhi–Zi–Da–Huang decoction. It is concluded that the developed ultra high performance liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry method with high sensitivity and resolution is suitable for identifying and characterizing the chemical constituents of Zhi–Zi–Da–Huang decoction, and the analysis provides a helpful chemical basis for further research on Zhi–Zi–Da–Huang decoction.  相似文献   

8.
Iridoid glycosides (IGs), the major constituents in Fructus Gardeniae, have demonstrated various pharmacological activities, but there is no systematic chemical profile of IGs in Fructus Gardeniae in the published literature until now. Therefore, it is imperative that a rapid and sensitive high‐performance liquid chromatography coupled with quadrupole time‐of‐flight tandem mass spectrometry (HPLC‐Q/TOF‐MS/MS) method is established for comprehensive characterization of IGs in Fructus Gardeniae. Firstly, the fragmentation patterns of six known IGs were investigated and proposed and further concluded the diagnostic fragment ions and characteristic fragmentation pathways. Then, based on the summarized fragmentation patterns and the known compounds in the literatures, the other IGs in Fructus Gardeniae were identified successively. As a result, a total of 20 IGs were identified, of which three pairs of epimers were structurally characterized and differentiated. More importantly, one compound, the isoshanzhiside methyl ester, was tentatively identified as a new compound. The results of this study demonstrate the superiority of HPLC‐MS with a high‐resolution mass spectrometer for the rapid and sensitive structural elucidation of the multiple groups of constituents in Fructus Gardeniae. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
The conceptual design of the O‐trap Fourier transform ion cyclotron resonance (FT‐ICR) cell addresses the speed of analysis issue in FT‐ICR mass spectrometry. The concept of the O‐trap includes separating the functions of ion excitation and detection between two different FT‐ICR cell compartments. The detection compartment of the O‐trap implements additional internal coaxial electrodes around which ions with excited cyclotron motion revolve. The expected benefits are higher resolving power and the lesser effect of the space charge. In this work we present the first experimental demonstration of the O‐trap cell and its features, including the high ion transfer efficiency between two distinct compartments of an ICR cell after excitation of the coherent cyclotron motion. We demonstrate that utilization of the multiple‐electrode detection in the O‐trap provides mass resolving power enhancement (achieved over a certain time) equal to the order of the frequency multiplication. In an O‐trap installed in a 5 T desk‐top cryogen‐free superconducting magnet, the resolving power of R = 80 000 was achieved for bradykinin [M + 2H]2+ (m/z 531; equivalent to 100 000 when recalculated for m/z 400) in 0.2 s analysis time (transient length), and R = 300 000 at m/z 531 for a 1 s transient. In both cases, detection on the third multiple of the cyclotron frequency was implemented. In terms of the acquisition speed at fixed resolving power, such performance is equivalent to conventional FT‐ICR detection using a 15 T magnet. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The multiple bioactive constituents in Hedyotis diffusa Willd. (H. diffusa) were extracted and characterized by high‐performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC‐ESI‐MSn). The optimized separation condition was obtained using an Agilent ZorBax SB‐C18 column (4.6×150 mm, 5 μm) and gradient elution with water (containing 0.1% formic acid) and acetonitrile (containing 0.1% formic acid), under which baseline separation for the majority of compounds was achieved. Among the compounds detected, 14 iridoid glucosides, 10 flavonoids, 7 anthraquinones, 1 coumarin and 1 triterpene were unambiguously identified or tentatively characterized based on their retention times and mass spectra in comparison with the data from standards or references. The fragmentation behavior for different types of constituents was also investigated, which could contribute to the elucidation of these constituents in H. diffusa. The present study reveals that even more iridoid glycosides were found in H. diffusa than hitherto assumed. The occurrence of two iridoid glucosides and five flavonoids in particular has not yet been described. This paper marks the first report on the structural characterization of chemical compounds in H. diffusa by a developed HPLC‐ESI‐MSn method.  相似文献   

11.
Matrix‐assisted laser desorption/ionization (MALDI) is a mass spectrometry (MS) ionization technique suitable for a wide variety of sample types including highly complex ones such as natural resinous materials. Coupled with Fourier transform ion cyclotron resonance (FT‐ICR) mass analyser, which provides mass spectra with high resolution and accuracy, the method gives a wealth of information about the composition of the sample. One of the key aspects in MALDI‐MS is the right choice of matrix compound. We have previously demonstrated that 2,5‐dihydroxybenzoic acid is suitable for the positive ion mode analysis of resinous samples. However, 2,5‐dihydroxybenzoic acid was found to be unsuitable for the analysis of these samples in the negative ion mode. The second problem addressed was the limited choice of calibration standards offering a flexible selection of m/z values under m/z 1000. This study presents a modified MALDI‐FT‐ICR‐MS method for the analysis of resinous materials, which incorporates a novel matrix compound, 2‐aminoacridine for the negative ion mode analysis and extends the selection of internal standards with m/z <1000 for both positive (15 different phosphazenium cations) and negative (anions of four fluorine‐rich sulpho‐compounds) ion mode. The novel internal calibration compounds and matrix material were tested for the analysis of various natural resins and real‐life varnish samples taken from cultural heritage objects. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
High‐performance liquid chromatography coupled with time‐of‐flight mass spectrometry (HPLC‐TOF/MS) and high‐performance liquid chromatography–triple quadrupole mass spectrometry (HPLC‐QQQ/MS/MS) were utilized to clarify the chemical constituents of Mahuang‐Fuzi‐Xixin Decoction. There are 52 compounds, including alkaloids, amino acids and organic acids were identified or tentatively characterized by their characteristic high resolution mass data by HPLC‐QQQ/MS/MS. In the subsequent quantitative analysis, 10 constituents, including methyl ephedrine, aconine, songrine, fuziline, neoline, talatisamine, chasmanine, benzoylmesaconine, benzoylaconine and benzoylhypaconine were simultaneously determined by HPLC‐QQQ/MS/MS with multiple reaction monitoring mode. Satisfactory linearity was achieved with wide linear range and fine determination coefficient (r > 0.9992). The relative standard deviations (RSD) of inter‐ and intra‐day precisions were <3%. This method was also validated by repeatability, stability and recovery with RSD <3% respectively. A highly sensitive and efficient method was established for chemical constituents studying, including identification and quantification of Mahuang‐Fuzi‐Xixin decoction.  相似文献   

13.
β‐Asarone (BAS), a phenylpropanoid from Acorus calamus Linn., has shown biological effects in the management of cognitive impairment conditions such as Alzheimer's disease. The present paper describes a selective and sensitive liquid chromatography–tandem mass spectrometric method (HPLC‐MS/MS) using electrospray ionization source (ESI) for quantification of BAS in rat plasma. Briefly, the plasma samples were pre‐treated using a simple solid‐phase extraction method. The separation of BAS and the internal standard, caffeine, was achieved on an Agilent Zorbax XDB C18 column (50 × 2.1 mm i.d., 5 µm) using 0.2 mL/min isocratic mobile phase flow. The detection was performed using an Applied Biosystems Hybrid Q‐Trap API 2000 mass spectrometer equipped with an ESI source operated in positive mode. Also, the developed bioanalytical method was validated as per the US FDA bioanalytical guidelines over the concentration range of 9.79–4892.50 ng/mL (r2 ≥ 0.9951) for BAS from rat plasma. The mean percentage recovery (n = 3) for the low, middle and high quality control samples was 86.92 ± 3.89, 85.30 ± 1.09 and 87.24 ± 4.03%, respectively. The applicability of the validated HPLC‐MS/MS method was demonstrated by successful measurement of BAS from plasma following oral administration of Acorus calamus rhizome extracts to three female albino Wistar rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
A fast liquid chromatography method with diode‐array detection (DAD) and time‐of‐flight mass spectrometry (TOF‐MS) has been developed for analysis of constituents in Flos Lonicerae Japonicae (FLJ), a traditional Chinese medicine derived from the flower bud of Lonicera japonica. The chromatographic analytical time decreased to 25 min without sacrificing resolution using a column packed with 1.8‐µm porous particles (4.6 × 50 mm), three times faster than the performance of conventional 5.0‐µm columns (4.6 × 150 mm). Four major groups of compounds previously isolated from FLJ were structurally characterized by DAD‐TOF‐MS: iridoid glycosides showed maximum UV absorption at 240 nm; phenolic acids at 217, 242, and 326 nm; flavonoids at 255 and 355 nm; while saponins had no absorption. In electrospray ionization (ESI)‐TOF‐MS experiments, elimination of a glucose unit (162 Da), and successive losses of H2O, CH3OH and CO, were generally observed in iridoid glycosides; saponins were characterized by a series of identical aglycone ions; phenolic acids typically generated a base peak at [M–H–caffeoyl]? by loss of a caffeic acid unit (162 Da) and several marked quinic acid moiety ions; cleavage of the glycosidic bond (loss of 162 or 308 Da), subsequent losses of H2O, CO, RDA and C‐ring fragmentation were the most possible fragmentation pathways for flavonoids. By accurate mass measurements within 4 ppm error for each molecular ion and subsequent fragment ions, as well as the ‘full mass spectral’ information of TOF‐MS, a total of 41 compounds including 13 iridoid glycosides, 11 phenolic acids, 7 saponins, and 10 flavonoids were identified in a methanolic extract of FLJ. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
In this study, the technique of high‐performance liquid chromatography coupled with electrospray ionization quadrupole time‐of‐flight mass spectrometry (HPLC‐ESI‐Q‐TOFMS) was used to analyze and identify the absorptive constituents and their metabolites in drug‐containing urine of Wuzhishan (WZS)‐miniature pigs administered with Puerariae Lobatae Radix (PLR) decoction. With the accurate mass measurements (<5 ppm) and effective MS2 fragment ions, 96 compounds, including eight original constituents and 88 metabolites, were identified from the drug‐containing urine. Among these, 64 metabolites were new ones and their structures can be categorized into five types: isoflavones, puerols, O‐desmethylangolensins, equols and isoflavanones. In particular, puerol‐type constituents in PLR were first proved to be absorptive in vivo. Meanwhile, the metabolic pathways of PLR in vivo were investigated. On the basis of relative content of the identified compounds, 13 major metabolites accounting for approximately 50% of the contents, as well as their corresponding 12 prototype compounds, were determined as the major original absorptive constituents and metabolites of PLR in vivo. The HPLC‐ESI‐Q‐TOFMS technique proved to be powerful for characterizing the chemical constituents from the complicated traditional Chinese medicine matrices in this research. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The consumption of design drugs, frequently known as new psychoactive substances (NPS), has increased considerably worldwide, becoming a severe issue for the responsible governmental agencies. These illicit substances can be defined as synthetic compounds produced in clandestine laboratories in order to act as analogs of schedule drugs mimetizing its chemical structure and improving its pharmacological effects while hampering the control and making regulation more complicated. In this way, the development of new methodologies for chemical analysis of NPS drugs is indispensable to determine a novel class of drugs arising from the underground market. Therefore, this work shows the use of high‐resolution mass spectrometry Fourier transform ion cyclotron resonance mass spectrometry (FT‐ICR MS) applying different ionization sources such as paper spray ionization (PSI) and electrospray ionization (ESI) in the evaluation of miscellaneous of seized drugs samples as blotter paper (n = 79) and tablet (n = 100). Also, an elucidative analysis was performed by ESI(+)MS/MS experiments, and fragmentation mechanisms were proposed to confirm the chemical structure of compounds identified. Besides, the results of ESI(+) and PSI(+)‐FT‐ICR MS were compared with those of GC–MS, revealing that ESI(+)MS showed greater detection efficiency among the methodologies employed in this study. Moreover, this study stands out as a guide for the chemical analysis of NPS drugs, highlighting the differences between the techniques of ESI(+)‐FT‐ICR MS, PSI(+)‐FT‐ICR MS, and GC–MS.  相似文献   

17.
Comprehensive analysis of high‐resolution mass spectra of aged natural dammar resin obtained with Fourier transform ion cyclotron resonance mass spectrometer (FT‐ICR‐MS) using matrix‐assisted laser desorption/ionization (MALDI) and atmospheric pressure chemical ionization (APCI) is presented. Dammar resin is one of the most important components of painting varnishes. Dammar resin is a terpenoid resin (dominated by triterpenoids) with intrinsically very complex composition. This complexity further increases with aging. Ten different solvents and two‐component solvent mixtures were tested for sample preparation. The most suitable solvent mixtures for the MALDI‐FT‐ICR‐MS analysis were dichloromethane‐acetone and dichloromethane‐ethanol. The obtained MALDI‐FTMS mass spectrum contains nine clusters of peaks in the m/z range of 420–2200, and the obtained APCI‐FTMS mass spectrum contains three clusters of peaks in the m/z range of 380–910. The peaks in the clusters correspond to the oxygenated derivatives of terpenoids differing by the number of C15H24 units. The clusters, in turn, are composed of subclusters differing by the number of oxygen atoms in the molecules. Thorough analysis and identification of the components (or groups of components) by their accurate m/z ratios was carried out, and molecular formulas (elemental compositions) of all major peaks in the MALDI‐FTMS and APCI‐FTMS spectra were identified (and groups of possible isomeric compounds were proposed). In the MALDI‐FTMS and APCI‐FTMS mass spectrum, besides the oxidized C30, triterpenoids also peaks corresponding to C29 and C31 derivatives of triterpenoids (demethylated and methylated, correspondingly) were detected. MALDI and APCI are complementary ionization sources for the analysis of natural dammar resin. In the MALDI source, preferably polar (extensively oxidized) components of the resin are ionized (mostly as Na+ adducts), whereas in the APCI source, preferably nonpolar (hydrocarbon and slightly oxidized) compounds are ionized (by protonation). Either of the two ionization methods, when used alone, gives an incomplete picture of the dammar resin composition. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
19.
A novel drug‐screening system, consisting of paper spray‐MS (PS‐MS) and a CE‐ESI‐MS method was developed. This system can be easily switched either to PS‐MS for rapidly screening samples or to the traditional CE‐ESI‐MS method for separation and to obtain detailed mass spectral information, while sharing the same mass spectrometer. In the former case, when a sharp (15°‐tip) chromatography paper was used, the optimized distance from the paper tip to the mass inlet was 7.7 mm, whereas the optimized distance for the CE‐ESI tip was ~13.5 mm. Using 4chloroamphetamine as a model compound, the LODs for PS‐MS and CE‐ESI‐MS were determined to ~0.1 and 0.25 ppm, respectively. Comparisons of results obtained using PS‐MS and CE‐ESI‐MS and the experimental conditions are described.  相似文献   

20.
A high‐performance liquid chromatography coupled with photodiode array detection and electrospray ionization tandem mass spectrometry (HPLC‐PAD‐ESI‐MSn) method was developed to evaluate the quality of Hpericum japomicum through establishing chromatographic fingerprint and simultaneous determination of seven phenolic compounds. The analysis was achieved on an Ultimate XB‐C18 analytical column (250 mm × 4.6 mm i.d., 5 µm) using an aqueous solution of acetic acid (pH 3.8) and methanol as the mobile phase. Ten samples of H. japomicum from various habitats were investigated and the correlation coefficients of similarity were determined from the HPLC fingerprints. By using an online ESI‐MSn, 20 common peaks in chromatographic fingerprints were identified as phenols, including flavones and their glycosides, flavonones and their glucosides, flavanols, xanthones, phloroglucinols, phenyl propanoids and chromones. Based on the above study, seven phenols which are considered to be major constituents in H. japomicum, including 3,4‐dihydroxybenzoic acid (1), taxfolin‐7‐O‐α‐l ‐rhamnoside (7), 7‐dihydroxy‐2‐(1‐methylpropyl)chromone‐8‐β‐d ‐glucoside (8), isoquercitrin (14), quercitrin (16), quercetin‐7‐O‐α‐l‐ rhamnoside (18) and quercetin (19) were quantified by the validated HPLC‐PAD method. This developed method by combination of chromatographic fingerprint and quantification analysis could be applied to control the quality of H. japomicum. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号