首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ion/molecule reactions of saturated hydrocarbons (n‐hexane, cyclohexane, n‐heptane, n‐octane and isooctane) in 28‐Torr N2 plasma generated by a hollow cathode discharge ion source were investigated using an Orbitrap mass spectrometer. It was found that the ions with [M+14]+ were observed as the major ions (M: sample molecule). The exact mass analysis revealed that the ions are nitrogenated molecules, [M+N]+ formed by the reactions of N3+ with M. The reaction, N3+ + M → [M+N]+ + N2, were examined by the density functional theory calculations. It was found that N3+ abstracts the H atom from hydrocarbon molecules leading to the formation of protonated imines in the forms of R′R″C?NH2+ (i.e. C–H bond nitrogenation). This result is in accord with the fact that elimination of NH3 is the major channel for MS/MS of [M+N]+. That is, nitrogen is incorporated in the C–H bonds of saturated hydrocarbons. No nitrogenation was observed for benzene and acetone, which was ascribed to the formation of stable charge‐transfer complexes benzene????N3+ and acetone????N3+ revealed by density functional theory calculations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Plasma desorption (PD) mass spectra of high molecular weight addition polymers of 2.2-bis-[4-(2.3-epoxypropoxy)phenyl]propane (DGEBA) and benzylamine show protonated molecular ions of the intact polymers and oligomer molecules. In the spectrum of a DGEBA/N,N′-dibenzyl-5-oxanonanediamine-1.9 addition polymer only fragments of the oligomers and a cyclic oligomer are observed. In both polymer spectra there is no indication for side reactions during the addition polymerization such as ether formation. Fast-atom bombardment (FAB) spectra of telechelic prepolymers having amino end groups show the regular oligomers with increasing degree of polymerization and the expected fragmentation products. Only prepolymers with epoxide end groups contain the regular prepolymers as well as side reaction products which are formed by reactions of the telechelics and DGEBA or by reaction of themselves. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
The electronic properties of a diarsaallene ArAs=C=AsAr and a phosphaarsaallene ArP=C=AsAr (Ar: 2,4,6-tri-tert-butylphenyl) have been investigated by using UV photoelectron spectroscopy and by density functional calculations on model compounds [(CH3)2C6H3Pn=C=AsC6H3(CH3)2, Pn: As, P]. Moreover, a comparison of the geometrical and electronic structures of the parent heteroallenes with those of the arsaethene H2C=AsH and phosphaethene H2C=PH has also been undertaken in order to determine the magnitude of the interaction between the π bond and the pnictogen lone pair nPn.  相似文献   

4.
A C? C bond‐forming conjugate reaction was successfully applied to the enantioselective dearomatization of β‐naphthols. A C(sp2)? C(sp3) bond is formed by using propargylic ketones as reactive partners. Good to excellent Z/E ratios and ee values were obtained by employing an in situ generated magnesium catalyst. Further transformations of the Z‐configured C? C double bond in the products were achieved under mild reaction conditions. Moreover, the stereocontrolling element of this magnesium‐catalyzed dearomatization reaction was explored by computational chemistry.  相似文献   

5.
It has been discovered experimentally that 5,5,6-trihydroxy-6-methylpyrimidine-2,4-dione is formed on oxidizing 5-hydroxy-6-methyluracil with molecular oxygen in aqueous medium in the presence of copper(II) chloride. Ab initio and DFT calculations on the 6-31G* basis, both in the gas phase and allowing for solvent, showed that the process proceeds with the direct participation of an activated oxygen molecule on the complex CuCl2·(5-hydroxy-6-methyluracil)2. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 4, pp. 586-593, April, 2009.  相似文献   

6.
7.
Hydrogen bonds of phenol–cyclohexanone and phenol–H2O2 in the studied Baeyer–Villiger (B–V) oxidation have been investigated by HF, B3LYP, and MP2 methods with various basis sets. The accurate single‐point energies were performed using CCSD(T)/6‐31+G(d,p) and CCSD(T)/aug‐cc‐pVDZ on the optimized geometries of MP2/6‐31+G(d,p). It has been confirmed that B3LYP/6‐31+G(d,p) could be used to study such hydrogen bonds. Energetic analysis of complexes was carried out using the Xantheas method with BSSE corrected by CP method. Orbital energy order (ε) illuminated that phenol with good hydrogen donor‐acceptor property can interact with cyclohexanone or H2O2 to form hydrogen bound complexes, and the binding energies (BE) range from ?4.38 to ?14.06 kcal mol?1. NBO analysis indicated that the redistribution of atomic charges in the complexes facilitated nucleophilic attack of H2O2 on cyclohexanone. The calculated results match remarkably well with the experimental phenomena. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

8.
The reaction of Na2[Fe(CO)4] with Br2CF2 in n‐pentane generates a mixture of the compounds (CO)3Fe(μ‐CO)3–n(μ‐CF2)nFe(CO)3 ( 2 , n = 2; 3 , n = 1) in low yields with 3 as the main product. 3 is obtained free from 2 by reacting Br2CF2 with Na2[Fe2(CO)8]. The non‐isolable monomeric complex (CO)4Fe=CF2 ( 1 ) can probably considered as the precursor for 2 . 3 reacts with PPh3 with replacement of two CO ligands to form Fe2(CO)6(μ‐CF2)(PPh3)2 ( 4 ). The complexes 2 – 4 were characterized by single crystal X‐ray diffraction. While the structure of 2 is strictly similar to that of Fe2(CO)9, the structure of 3 can better be described as a resulting from superposition of the two enantiomers 3 a and 3 b with two semibridging CO groups. Quantum chemical DFT calculations for the series (CO)3Fe(μCO)3–n(μ‐CF2)nFe(CO)3 (n = 0, 1, 2, 3) as well as for the corresponding (μ‐CH2) derivatives indicate that the progressively larger σ donor and π acceptor properties for the bridging ligands, in the order CO < CF2 < CH2, favor a stronger Fe–Fe bond.  相似文献   

9.
The synthesis, structure and electronic properties of novel Group 6 Fischer alkoxy–bis(carbene) complexes are reported. The UV/Vis spectra of these species display two main absorptions at approximately 350 and 550 nm attributable to a ligand‐field (LF) and metal‐to‐ligand charge‐transfer (MLCT) transitions, respectively. The planarity of the system and the cooperative effect of both pentacarbonyl metal moieties greatly enhance the conjugation between the group at the end of the spacer and the metal carbene fragment provoking dramatic changes in the LF and MLCT absorptions. This is in contrast to related push–pull Fischer monocarbenes, where the position of the MLCT band remains mostly unaltered regardless the substituent attached to the donor fragment. In addition, the MLCT maxima can be tuned with subtle modifications of the electronic nature of the central aryl fragment in the novel A–π‐D–π‐A (A=acceptor, D=donor) systems. DFT and time‐dependent (TD) DFT quantum chemical calculations at the B3LYP/def2‐SVP level have also been performed to determine the minimum‐energy molecular structure of this family of compounds and to analyse the nature of the vertical one‐electron excitations associated to the observed UV/Vis absorptions as well as to rationalise their electrochemical behaviour. The ability of tuning up the electronic properties of the compounds studied herein may be of future use in material chemistry.  相似文献   

10.
2-Propanol or 1-propanol in acetonitrile, when exposed to air and irradiated with a tungsten lamp in the presence of catalytic amounts of copper(ii) acetate and hydroquinone, are oxidized to give acetone or propanal, respectively.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1147–1149, June, 1994.We express our gratitude to the administration of the University of Neuchfitel (Switzerland) for having provided the possibility and means to complete this work. We also thank Dr. S. Claude, Mr. A. Béguin, and Mr. G. Meister of the same University for their assistance in the experiments.The financial support of the Russian Foundation for Basic Research (Grant No. 93-03-5226) and the International Science Foundation (Grant MMS 000) is gratefully acknowledged.  相似文献   

11.
The interactions between the neutral and charged (?2, ?1, +1, and +2) Tin (n = 1–7) clusters and one O2 molecule were investigated by density functional theory. The calculated results show that the oxygen molecule is dissociative on the neutral Tin clusters. Geometrically, the two O atoms are distributed at the two sides across the neutral Tin cluster for n = 1–4 and the oxygen atom favors the three‐fold hollow site for n = 5, 6, and 7. The binding energy per atom (Eb) and energy gap (Egap) show higher stability and lower chemical activity of the neutral TinO2 (n = 1–7) systems compared with the corresponding Tin clusters. The adsorption energies (Ead) exhibit a continuously ascending tendency except for n = 4. The results of the addition of different charges (?2, ?1, +1, and +2) on the most stable neutral TinO2 (n = 1–7) systems indicate that their geometries are usually perturbed. The stabilities of the neutral TinO2 systems are enhanced by adding one negative charge. The strongest interaction of the charged Tin clusters (?2, ?1, +1, and +2) with O2 molecule is found at charge +2. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

12.
The co‐adsorption of O2 and CO on anionic sites of gold species is considered as a crucial step in the catalytic CO oxidation on gold catalysts. In this regard, the [Au2O2(CO)n]? (n=2–6) complexes were prepared by using a laser vaporization supersonic ion source and were studied by using infrared photodissociation spectroscopy in the gas phase. All the [Au2O2(CO)n]? (n=2–6) complexes were characterized to have a core structure involving one CO and one O2 molecule co‐adsorbed on Au2? with the other CO molecules physically tagged around. The CO stretching frequency of the [Au2O2(CO)]? core ion is observed around =2032–2042 cm?1, which is about 200 cm?1 higher than that in [Au2(CO)2]?. This frequency difference and the analyses based on density functional calculations provide direct evidence for the synergy effect of the chemically adsorbed O2 and CO. The low lying structures with carbonate group were not observed experimentally because of high formation barriers. The structures and the stability (i.e., the inertness in a sense) of the co‐adsorbed O2 and CO on Au2? may have relevance to the elementary reaction steps on real gold catalysts.  相似文献   

13.
We report the synthesis and X‐ray characterization of the N6‐benzyl‐N6‐methyladenine ligand (L) and three metal complexes, namely [Zn(HL)Cl3]·H2O ( 1 ), [Cd(HL)2Cl4] ( 2 ) and [H2L]2[Cd3(μ‐L)2(μ‐Cl)4Cl6]·3H2O ( 3 ). Complex 1 consists of the 7H‐adenine tautomer protonated at N3 and coordinated to a tetrahedral Zn(II) metal centre through N9. The octahedral Cd(II) in complex 2 is N9‐coordinated to two N6‐benzyl‐N6‐methyladeninium ligands (7H‐tautomer protonated at N3) that occupy apical positions and four chlorido ligands form the basal plane. Compound 3 corresponds to a trinuclear Cd(II) complex, where the central Cd atom is six‐coordinated to two bridging μ‐L and four bridging μ‐Cl ligands. The other two Cd atoms are six‐coordinated to three terminal chlorido ligands, to two bridging μ‐Cl ligands and to the bridging μ‐L through N3. Essentially, the coordination patterns, degree of protonation and tautomeric forms of the nucleobase dominate the solid‐state architectures of 1 – 3 . Additionally, the hydrogen‐bonding interactions produced by the endocyclic N atoms and NH groups stabilize high‐dimensional‐order supramolecular assemblies. Moreover, energetically strong anion–π and lone pair (lp)–π interactions are important in constructing the final solid‐state architectures in 1 – 3 . We have studied the non‐covalent interactions energetically using density functional theory calculations and rationalized the interactions using molecular electrostatic potential surfaces and Bader's theory of atoms in molecules. We have particularly analysed cooperative lp–π and anion–π interactions in 1 and π+–π+ interactions in 3 .  相似文献   

14.
A series of model sulfides was oxidized in the NMR sample tube to sulfoxides and sulfones by the stepwise addition of meta‐chloroperbenzoic acid in deuterochloroform. Various methods of quantum chemical calculations have been tested to reproduce the observed 1H and 13C chemical shifts of the starting sulfides and their oxidation products. It has been shown that the determination of the energy‐minimized conformation is a very important condition for obtaining realistic data in the subsequent calculation of the NMR chemical shifts. The correlation between calculated and observed chemical shifts is very good for carbon atoms (even for the ‘cheap’ DFT B3LYP/6‐31G* method) and somewhat less satisfactory for hydrogen atoms. The calculated chemical shifts induced by oxidation (the Δδ values) agree even better with the experimental values and can also be used to determine the oxidation state of the sulfur atom (? S? , ? SO? , ? SO2? ). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
The bis(diphenylphosphino)methane (dppm)‐bridged dinuclear cycloplatinated complex {[Pt(L)]2(μ‐dppm)}2+ (Pt2 ? dppm; HL: 2‐phenyl‐6‐(1H‐pyrazol‐3‐yl)‐pyridine) demonstrates interesting reversible “pivot‐hinge”‐like intramolecular motions in response to the protonation/deprotonation of L. In its protonated “closed” configuration, the two platinum(II) centers are held in position by intramolecular d8–d8 Pt–Pt interaction. In its deprotonated “open” configuration, such Pt–Pt interaction is cleaved. To further understand the mechanism behind this hingelike motion, an analogous dinuclear cycloplatinated complex, {[Pt(L)]2(μ‐dchpm)}2+ (Pt2 ? dchpm) with bis(dicyclohexylphosphino)methane (dchpm) as the bridging ligand, was synthesized. From its protonation/deprotonation responses, it was revealed that aromatic π–π interactions between the phenyl moieties of the μ‐dppm and the deprotonated pyrazolyl rings of L was essential to the reversible cleavage of the intramolecular Pt–Pt interaction in Pt2 ? dppm. In the case of Pt2 ? dchpm, spectroscopic and spectrofluorometric titrations as well as X‐ray crystallography indicated that the distance between the two platinum(II) centers shrank upon deprotonation, thus causing a redshift in its room‐temperature triplet metal–metal‐to‐ligand charge‐transfer emission from 614 to 625 nm. Ab initio calculations revealed the presence of intramolecular hydrogen bonding between the deprotonated and negatively charged 1‐pyrazolyl‐N moiety and the methylene CH and phenyl C–H of the μ‐dppm. The “open” configuration of the deprotonated Pt2 ? dppm was estimated to be 19 kcal mol?1 more stable than its alternative “closed” configuration. On the other hand, the open configuration of the deprotonated Pt2 ? dchpm was 6 kcal mol?1 less stable than its alternative closed configuration.  相似文献   

16.
17.
A new inorganic–organic hybrid based on an aspartate functionalized polyoxomolybdate, [pentaaquacobalt(II)]‐μ‐aspartate‐[γ‐octamolybdate]‐μ‐aspartate‐[pentaaquacobalt(II)] tetrahydrate, [Co2(C4H6NO4)2(γ‐Mo8O26)(H2O)10]·4H2O ( 1 ), has been synthesized under hydrothermal conditions from the reaction of an Evans–Showell‐type polyoxometalate, (NH4)6[Co2Mo10H4O38], and l ‐aspartic acid. The complex exhibits a supramolecular three‐dimensional framework structure in the crystal lattice. Compound 1 was structurally characterized by elemental analyses, IR and UV–Vis (diffuse reflectance) spectroscopy and single‐crystal X‐ray diffraction. In this compound, aspartic acid acts as a bridge between the two Co atoms and the Mo centres, with the –CH2COOH side chain directly linked to the Mo centre in γ‐[Mo8O26]4? and the α‐carboxylate side chain bound to the Co centre. Commonly, the binding of transition‐metal complexes to POMs involves coordination of the metal to a terminal O atom of the POM so that 1 , with a bridging ligand between Mo and Co atoms, belongs to a separate class of hybrid materials. While the starting materials are both chiral and one might expect them to form a chiral hybrid, the decomposition of the chiral Evans–Showell‐type POM and its conversion to the centrosymmetric γ‐octamolybdate POM, plus the presence of two aspartate ligands centrosymmetrically placed on either side of the POM, leads to the formation of an achiral hybrid. We have studied energetically by means of density functional theory (DFT) calculations and using the Bader's `atoms‐in‐molecules' analysis the electrostatically enhanced hydrogen bonds (EEHBs) observed in the solid state of 1 , which are crucial for the formation of one‐dimensional supramolecular assemblies.  相似文献   

18.
In the present work, high temperature oxidation of HP40 alloy was carried out at 1050 °C under H2–H2O and air atmospheres; the influence of atmosphere on surface morphology and composition was studied. Octahedral crystals with considerable spalled regions are present on the surface of alloy oxidized under air, the oxide scale composes of MnCr2O4, Cr2O3 and (Fe, Ni)Cr2O4 and spalled regions exhibit base alloy and SiO2‐rich regions. The surface of alloy oxidized under H2–H2O is fully covered by small granular crystals and blade‐type structures without spallation, and the oxide scale composes of MnCr2O4 and Cr2O3. Moreover, X‐ray photoelectron spectroscopy analysis shows considerable difference in chemical valence states of Mn, Cr and O elements on both alloy surfaces, and hydroxyl compounds exist on the alloy oxidized under H2–H2O atmosphere. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
Cerium oxide cluster cations (CemOn+, m=2–16; n=2m, 2m±1 and 2m±2) are prepared by laser ablation and reacted with acetylene (C2H2) in a fast‐flow reactor. A time‐of‐flight mass spectrometer is used to detect the cluster distribution before and after the reactions. Reactions of stoichiometric CemO2m+ (m=2–6) with C2H2 produce CemO2m?2+ clusters, which indicates a “double‐oxygen‐atom transfer” reaction CemO2m++C2H2→CemO2m?2++(CHO)2 (ethanedial). A single‐oxygen‐atom transfer reaction channel is also identified as CemO2m++C2H2→CemO2m?1++C2H2O (at least for m=2 and 3). Density functional theory calculations are performed to study reaction mechanisms of Ce2O4++C2H2, and the calculated results confirm that both the single‐ and double‐oxygen‐atom transfer channels are thermodynamically and kinetically favourable.  相似文献   

20.
The tri‐tert‐butylphenalenyl (TBPLY) radical exists as a π dimer in the crystal form with perfect overlapping of the singly occupied molecular orbitals (SOMOs) causing strong antiferromagnetic exchange interactions. 2,5‐Di‐tert‐butyl‐6‐oxophenalenoxyl (6OPO) is a phenalenyl‐based air‐stable neutral π radical with extensive spin delocalization and is a counter analogue of phenalenyl in terms of the topological symmetry of the spin density distribution. X‐ray crystal structure analyses showed that 8‐tert‐butyl‐ and 8‐(p‐XC6H4)‐6OPOs (X=I, Br) also form π dimers in the crystalline state. The π‐dimeric structure of 8‐tert‐butyl‐6OPO is seemingly similar to that of TBPLY even though its SOMO–SOMO overlap is small compared with that of TBPLY. The 8‐(p‐XC6H4) derivatives form slipped stacking π dimers in which the SOMO–SOMO overlaps are greater than in 8‐tert‐butyl‐6OPO, but still smaller than in TBPLY. The solid‐state electronic spectra of the 6OPO derivatives show much weaker intradimer charge‐transfer bands, and SQUID measurements for 8‐(p‐BrC6H4)‐6OPO show a weak antiferromagnetic exchange interaction in the π dimer. These results demonstrate that the control of the spin distribution patterns of the phenalenyl skeleton switches the mode of exchange interaction within the phenalenyl‐based π dimer. The formation of the relevant multicenter–two‐electron bonds is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号