首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
To explore novel natural product-based nitrogen-containing heterocyclic compounds with antiproliferative activity, 20 L-carvone-derived pyrimidine-urea compounds 4a–4t were synthesized through the multi-step reaction of L-carvone, and structurally characterized by Fourier transform infrared (FT-IR), hydrogen-1 nuclear magnetic resonance (1H-NMR), Carbon-13 nuclear magnetic resonance (13C-NMR), and High-resolution mass spectrometry (HRMS). Besides, the in vitro antiproliferative activity of the target compounds against HepG2, Hela, and MCF-7 cells was evaluated by methyl thiazolyl tetrazolium (MTT) assay. According to the results, the target compounds showed certain inhibitory activities against the tested cancer cell lines, and five compounds ( 4b , 4h , 4k , 4l , and 4t ) exhibited better inhibition activities against Hela cells than the positive control ( 5-FU ). Among them, compound 4b held significant antiproliferative activities against Hela and HepG2 cells, and thus deserved further study as a leading compound of new anticancer drugs. In addition, an effective and reasonable three-dimensional quantitative structure-activity relationships (3D-QSAR) model was built by the Comparative molecular field analysis (CoMFA) method to analyze the relationship between the structures of the target compounds and their antiproliferative activities (expressed as pIC50) against Hela cells, and proven to have good predictive ability. Molecular docking was carried out to study the possible binding modes of compound 4b and Survivin, and it was found that compound 4b could be well embedded into the active site, along with the formation of several hydrogen bonds and hydrophobic interactions.  相似文献   

2.
Compound 27 {1, 12‐bis[4‐(4‐amino‐6,7‐dimethoxyquinazolin‐2‐yl)piperazin‐1‐yl]dodecane‐1,12‐dione} is a novel small molecule agonist of EphA2 receptor tyrosine kinase. It showed much improved activity for the activation of EphA2 receptor compared with the parental compound doxazosin. To support further pharmacological and toxicological studies of the compound, a method using liquid chromatography and electrospray ionization tandem mass spectrometry (LC–MS/MS) has been developed for the quantification of this compound. Liquid–liquid extraction was used to extract the compound from mouse plasma and brain tissue homogenate. Reverse‐phase chromatography with gradient elution was performed to separate compound 27 from the endogenous molecules in the matrix, followed by MS detection using positive ion multiple reaction monitoring mode. Multiple reaction monitoring transitions m/z 387.3 → 290.1 and m/z 384.1 → 247.1 were selected for monitoring compound 27 and internal standard prazosin, respectively. The linear calibration range was 2–200 ng/mL with the intra‐ and inter‐day precision and accuracy within the acceptable range. This method was successfully applied to the quantitative analysis of compound 27 in mouse plasma and brain tissue with different drug administration routes.  相似文献   

3.
In studying the metabolic pathways underlying the mechanism of carcinogenesis of the heterocyclic amine of 2‐amino‐3‐methylimidazo[4,5‐f]quinoline (IQ), we recently found a new metabolite which gave an [M + H]+ ion of m/z 217 when subjected to electrospray ionization (ESI) in positive‐ion mode. Following ip injection of this metabolite of m/z 217 (designated as m/z 217) to beta‐naphthoflavone‐treated mice, 57% of the total radioactivity was recovered in a 24‐h mouse urine sample. HPLC separation followed by MS analysis indicates that the urine sample contained m/z 217 (36 ± 3% of total recovered radioactivity) and two other peaks that gave rise to the [M + H]+ ions of m/z 393 (31 ± 4%, designated as m/z 393) and m/z 233 (14 ± 1%, designated as m/z 233). Beta‐glucuronidase treatment of m/z 393 resulted in a radioactive peak corresponding to m/z 217. ESI in combination with various mass spectrometry techniques, including multiple‐stage mass spectrometry, exact mass measurements and H/D exchange followed by tandem mass spectrometry, was used for structural characterization. The urinary metabolites of m/z 217, 393 and 233 were identified as 1,2‐dihydro‐2‐amino‐5‐hydroxy‐3‐methylimidazo[4,5‐f]quinoline, 1,2‐dihydro‐2‐amino‐5‐O‐glucuronide‐3‐methylimidazo[4,5‐f]quinoline and 1,2‐dihydro‐2‐amino‐5,7‐dihydroxy‐3‐methylimidazo[4,5‐f]quinoline, respectively. Our results demonstrated that m/z 217 is biotransformed in vivo to m/z 393 by O‐glucuronidation and to m/z 233 by oxidation. The observation of these more polar metabolites relative to IQ suggests that they may arise from a previously undescribed detoxicification pathway. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
A reliable method for structural analysis is crucial for the forensic investigation of new psychoactive substances (NPSs). Towards this end, mass spectrometry is one of the most efficient and facile methods for the identification of NPSs. However, the differentiation among 2‐, 3‐, and 4‐fluoromethcathinones (o‐, m‐, and p‐FMCs), which are ring‐fluorinated positional isomers part of the major class of NPSs referred to as synthetic cathinones, remains a challenge. This is mostly due to their similar retention properties and nearly identical full scan mass spectra, which hinder their identification. In this study, we describe a novel and practical method for differentiating the fluorine substitution position on the phenyl ring of FMCs, based on energy‐resolved mass spectrometry (ERMS) using an electron ionization‐triple quadrupole mass spectrometer. ERMS measurements showed that the three FMC positional isomers exhibited differences in relative abundances of both the fluorophenyl cation (m/z 95) and the fluorobenzoyl cation (m/z 123). The logarithmic plots of the abundance ratio of these two cations (m/z 95 to m/z 123) as a function of the collision energy (CE) followed the order of o‐FMC < p‐FMC < m‐FMC at each CE, which allowed the three isomers to be unambiguously and reliably differentiated. The theoretical dissociation energy calculations confirmed the relationship obtained by ERMS analyses, and additional ERMS measurements of methylmethcathinone positional isomers showed that the differences in abundance among the FMCs were attributed to the differences in their collision‐induced dissociation reactivities arising from the halogen‐induced resonance effects on the phenyl ring. Moreover, the method for differentiation described herein was successfully applied to the actual samples containing seized drugs. We expect that the described methodology will also contribute significantly to the reliable and accurate structural identification of NPSs in the fields of therapeutic, clinical, and forensic toxicology.  相似文献   

5.
Electrospray‐generated precursor ions usually follow the ‘even‐electron rule’ and yield ‘closed shell’ fragment ions. We characterize an exception to the ‘even‐electron rule.’ In negative ion electrospray mass spectrometry (ES‐MS), 2‐(ethoxymethoxy)‐3‐hydroxyphenol (2‐hydroxyl protected pyrogallol) easily formed a deprotonated molecular ion (M‐H)? at m/z 183. Upon low‐energy collision induced decomposition (CID), the m/z 183 precursor yielded a radical ion at m/z 124 as the base peak. The radical anion at m/z 124 was still the major fragment at all tested collision energies between 0 and 50 eV (Elab). Supported by computational studies, the appearance of the radical anion at m/z 124 as the major product ion can be attributed to the combination of a low reverse activation barrier and resonance stabilization of the product ions. Furthermore, our data lead to the proposal of a novel alternative radical formation pathway in the protection group removal of pyrogallol. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Four different geological sample types (a crude oil, a crude oil asphaltene, a reservoir core extract and a reservoir core asphaltene) have been characterized by negative ionization electrospray mass spectrometry at low and high mass resolution using a double‐focusing magnetic sector field mass spectrometer. The mass range, shape of the spectra and the signal distribution of the acidic constituents as well as the average molecular weights, the total ion abundance and signal intensity in the spectra were compared for the different sample types. Nominal mass classes have been evaluated and Kendrick mass plots were generated in order to identify homologous series. For the crude oil sample, accurate mass assignments were made by high‐resolution double‐focusing magnetic sector field mass spectrometry (DFMSFMS) and were compared with those obtained by negative ion electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS). With both instrument types, compounds with the molecular composition CnH2n+zO2, among which carboxylic acids predominated, were the main acidic compound class detectable in negative ESI mass spectra. Good agreement was achieved for the double bond class distribution and the carbon number distribution of the O2 class. In addition, minor compound classes could be identified using FTICRMS. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
A simple and sensitive liquid chromatography tandem multiple‐stage mass spectrometry (HPLC/MS/MS) method suitable for bulk lisinopril analysis was developed, by which lisinopril and its RSS isomer were separated and differentiated. In the collision‐induced dissociation (CID) mass spectra of the [M + H]+ ions, the abundance of the fragment ion of m/z 246 for lisinopril was about two times higher than the ion of m/z 245; however, the former fragment ion was noted to be a little lower than the latter for RSS isomer at all collision energies. In the CID mass spectra of the [M + Li]+ ion, the abundance of the rearrangement ion of m/z 315 for the RSS isomer was about three times higher than that for lisinopril. Furthermore, the difference was supported by the results of energy‐resolved mass spectrometry (ERMS) in the test range of collision energies. Similar differences were also observed between the CID mass spectra of lisinopril and RSS isomer methylester, which indicated that the RSS isomer could be rapidly characterized by the CID mass spectra of both the protonated and lithium adduct ion. Elemental compositions of all the ions were confirmed by Fourier Transform ion cyclotron resonance ESI mass spectrometry (FT‐ICR‐ESI/MS). In addition, theoretical computations were carried out to support the experimental results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
S‐oxidation is a common metabolic route for sulfur‐containing compounds. Whilst investigating the dissociation of a series of chemically synthesised model S‐oxide metabolites, two unexpected losses of 62 m/z units were observed in the collision‐induced dissociation (CID) product ion spectrum of protonated 3‐dimethylaminomethyl‐4‐(4‐methanesulfinyl‐3‐methylphenoxy)benzenesulfonamide. A single loss was initially assigned using the low‐resolution product ion spectrum, acquired by electrospray ionisation quadrupole ion trap mass spectrometry (ESI‐QIT‐MS), as methanethial, S‐oxide via a charge‐remote, four‐centred rearrangement. This assignment was consistent with well‐documented hydrogen rearrangements in the literature. Further, the loss was not observed for the parent compound. Thus, it was inferred that the site of metabolism was involved in the dissociation and the attractive nature of the four‐centred rearrangement meant that the loss of methanethial, S‐oxide was a logical assignment. However, deuterium‐labelling experiments and accurate mass measurements, performed using electrospray ionisation Fourier transform ion cyclotron resonance mass spectrometry (ESI‐FT‐ICR‐MS), showed that the nominal loss of 62 m/z units occurs via two distinct dissociation pathways. Neither of these losses was of methanethial, S‐oxide as initially hypothesised from the low‐resolution product ion spectrum of the protonated molecule. Mechanisms consistent with the experimental findings are postulated. An MS3 spectrum of the fully exchanged, deuterated species supported the proposed mechanisms by suggesting that 3‐dimethylaminomethyl‐4‐(4‐methanesulfinyl‐3‐methylphenoxy)benzenesulfonamide has multiple sites of protonation in the gas phase. The planar structures of the posited product ions are likely to provide the driving force for the rearrangements. The relevance of the observations with regards to pharmaceutical drug metabolite identification is discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The zwitterionic drug 3‐methyl‐9‐(2‐oxa‐2λ5‐2H‐1,3,2‐oxazaphosphorine‐2‐cyclohexyl)‐3,6,9‐triazaspiro[5,5]undecane chloride (SLXM‐2) is a novel synthetic compound which has shown anticancer activity and low toxicity in vivo. In this study, the various gas‐phase fragmentation routes were analyzed by electrospray ionization mass spectrometry (positive ion mode) in conjunction with tandem mass spectrometry (ESI‐MSn) for the first time. In ESI‐MS the fragment ion at m/z 289 (base peak) was formed by loss of the chlorine anion from the zwitterionic precursor SLXM‐2. The fragment ion at m/z 232 was formed from the ion at m/z 289 by loss of 1‐methylaziridine. The detailed gas‐phase collision‐induced dissociation (CID) fragmentation mechanisms obtained from the various precursor ions extracted from the zwitterionic SLXM‐2 drug was obtained by tandem mass spectrometry analyses. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
5‐Amino‐3‐methyl‐4‐phenylazo‐1H ‐pyrazole and ethyl cyanoacetate reacted in solvent‐free media at 150°C to produce 7‐amino‐3‐phenylazo‐2‐methyl‐4H ‐pyrazolo[1,5‐a]pyrimidine‐5‐one ( 3 ). A series of aromatic amines was coupled using this compound ( 3 ) and nitrous acid to produce new pyrazolo[1,5‐a] pyrimidine derivatives with two arylazo groups 4(a‐m) . The structures of these dyes were determined via UV–vis, Fourier transform infrared, proton nuclear magnetic resonance, high‐resolution mass spectral data, and elemental analysis. After synthesis, the solvent and acid–base effects of the dyes were investigated within the UV–vis region. The antimicrobial properties of the dyes were also studied. All dyes exhibited activity against Gram‐positive and Gram‐negative bacteria, and even against fungi. The results were compared to conventional reference results from the antibiotics ciprofloxacin and ketoconazole. Antioxidant potentials were analyzed using in vitro antioxidant models on the basis of DPPH (1,1‐d iphenyl‐2‐picrylhydrazyl) radical scavenging activities. Most of the compounds exhibited excellent antioxidant activities. In particular, compound 4b had a higher activity than Vitamin C.  相似文献   

11.
In the mass spectrometry of sofosbuvir, a new orally administered antihepatitis C drug, a weak peak is detected at the m/z value of the parent ion (m/z 530) as a result of in‐source dissociation and current methods to its quantification, is based on monitoring of the parent peak using ultra high‐performance liquid chromatography with tandem mass spectrometry. With these methods serum concentration of the drug is quantifiable only up to 4–5 h postdose. However, the fragmentation of the molecule generates a more stable ion at m/z 287 (base peak) with a signal intensity of about tenfold compared to the parent ion. Our study was aimed to improve sensitivity of analysis by acquisition of the m/z value of the daughter ion from which it originated instead of the parent molecule. This novelty allows us to measure serum concentrations of the drug for a longer time postdose and provides more opportunity for pharmacokinetic studies of sofosbuvir. Our method was linear over the concentration range of 2–2560 ng/mL of sofosbuvir in human serum with a limit of quantification of 2 ng/mL compared to 10 ng/mL reported previously. The coefficient variation values of both inter and intraday analysis were less than 13.8%, and the percentage error was less than 6.3.  相似文献   

12.

Abstract  

We present herein a new and efficient method for synthesis of bis-pyrazol pyrimidine derivatives by N-alkylation using a microwave-assisted synthetic process. Two new compounds, N-(4,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)methyl nicotinonitrile and 2,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)-4-methyl nicotinonitrile, were synthesized by the N-alkylation reaction. The novel compounds were characterized by Fourier transform infrared spectrometry, ultraviolet spectroscopy, elemental analysis, and nuclear magnetic resonance spectroscopy, etc. The microwave-assisted procedures have noteworthy advantages in terms of thermal efficiency over those carried out by conventional heating methods.  相似文献   

13.
Novel derivatives of benzo[h ]thieno[2,3‐b ]quinoline‐9‐yl(aryl)methanone were synthesized in good yield and short reaction times by reaction of 2‐mercaptobenzo[h ]quinoline‐3‐carbaldehyde with phenacyl bromides under basic conditions. All compounds were characterized using Fourier transform infrared, 1H nuclear magnetic resonance and 13C nuclear magnetic resonance, spectral data, and elemental analysis.  相似文献   

14.
A specific, sensitive and stable high‐performance liquid chromatographic–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for the quantitative determination of methyl 3‐amino‐6‐methoxythieno [2,3‐b]quinoline‐2‐carboxylate (PU‐48), a novel diuretic thienoquinolin urea transporter inhibitor in rat plasma. In this method, the chromatographic separation of PU‐48 was achieved with a reversed‐phase C18 column (100 × 2.1 mm, 3 μm) at 35°C. The mobile phase consisted of acetonitrile and water with 0.05% formic acid added with a gradient elution at flow rate of 0.3 mL/min. Samples were detected with the triple‐quadrupole tandem mass spectrometer with multiple reaction monitoring mode via electrospray ionization source in positive mode. The retention time were 6.2 min for PU‐48 and 7.2 min for megestrol acetate (internal standard, IS). The monitored ion transitions were mass‐to‐charge ratio (m/z) 289.1 → 229.2 for PU‐48 and m/z 385.3 → 267.1 for the internal standard. The calibration curve for PU‐48 was linear over the concentration range of 0.1–1000 ng/mL (r2 > 0.99), and the lower limit of quantitation was 0.1 ng/mL. The precision, accuracy and stability of the method were validated adequately. The developed and validated method was successfully applied to the pharmacokinetic study of PU‐48 in rats.  相似文献   

15.
Mass spectrometric differentiation of structural isomers is important for the analysis of forensic samples. Presently, there is no mass spectrometric method for differentiating halogen positional isomers of cannabimimetic compounds. We describe here a novel and practical method for differentiating one of these compounds, N‐(1‐amino‐3‐methyl‐1‐oxobutan‐2‐yl)‐1‐(4‐fluorobenzyl)‐1H‐indazole‐3‐carboxamide (AB‐FUBINACA (para)), and its fluoro positional (ortho and meta) isomers in the phenyl ring by electron ionization–triple quadrupole mass spectrometry. It was found that the three isomers differed in the relative abundance of the ion at m/z 109 and 253 in the product ion spectra, while the detected product ions were identical. The logarithmic values of the abundance ratio of the ions at m/z 109 to 253 (ln(A109/A253)) were in the order meta < ortho < para and increased linearly with collision energy. The differences in abundances were attributed to differences in the dissociation reactivity between the indazole moiety and the fluorobenzyl group because of the halogen‐positional effect on the phenyl ring. Our methodology, which is based on the abundance of the product ions in mass spectra, should be applicable to determination of the structures of other newly encountered designer drugs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Intense rearrangement processes involving migrations of hydrogen atoms and the phenyl group were observed in the electron impact induced fragmentation of 1-benzyl-3,3-dimethyldiaziridine. The following ions are observed: (i) m/z 146: a two-step fragmentation involving hydrogen transfer followed by loss of NH2; (ii) m/z 119: C—N1 bond fission followed by a 1–4 phenyl shift and loss of CH3N2; (iii) m/z 106: a process involving reciprocal hydrogen migration between the methyl and benzylic methylene groups; (iv) m/z 58: hydrogen transfer from benzylic methylene and subsequent loss of PhCHN. The origin of these ions has been confirmed by measurements of metastable transitions in 1-benzyl-3,3-dimethyldiaziridine, and on specifically deuterated and substituted diaziridines. The structure of the ions at m/z 119 and m/z 106 has been deduced by means of collisional activation spectrometry.  相似文献   

17.
Hyphenated techniques and especially ultra‐high performance liquid chromatography‐mass spectrometry (UHPLC‐MS) are nowadays widely employed in natural products research. However, the complex nature of plant extracts complicates considerably the analysis and the identification of their constituents. Nevertheless, new MS analyzers with increased resolving power and accuracy such as the orbital trap (Orbitrap) could facilitate drastically this process. The objective of this study is the development of a new structure‐oriented approach based on fast UHPLC‐high‐resolution (HR)MS and HRMS/MS methodologies for the identification of isoflavonoids in crude extracts. In addition, aims to assist dereplication procedures, to decrease the laborious isolation steps and orient the focused isolation of compounds of interest. As a proof of concept, the methanol extract of the stem bark of Amphimas pterocarpoides (Leguminosae) was selected. Based on chromatographic (retention time, polarity) and spectrometric features (ultraviolet spectra, accurate m/z, proposed elemental composition, ring double bond equivalent, and relative isotopic abundance) as well as HRMS/MS spectra, several isoflavonoids were identified. In order to verify the proposed structures, 11 isoflavonoids were selectively isolated and unambiguously identified using 1&2D nuclear magnetic resonance techniques. Moreover, the isolated isoflavonoids were studied in HRMS/MS level, employing electrospray ionization and atmospheric pressure chemical ionization sources, in both modes. Useful information regarding their fragmentation patterns was obtained, and characteristic diagnostic ions were defined for the identification of methoxylated isoflavones, dihydroisoflavones and 5‐hydroxylated isoflavonoids. Based on the current results, the proposed dereplication strategy was verified and could comprise a novel approach for the analysis of crude extracts in the future not only for isoflavonoids but also for other chemical classes of natural products. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Diphenylarsinic acid (DPAA) and phenylarsonic acid (PAA), which were degradation products of organoarsenic chemical warfare agents used as sternutatory gas, were detected in the well water at Kamisu, Ibaraki Prefecture, Japan. The standard material of DPAA was synthesized with aqueous arsenic acid and phenylhydrazine in order to determine organic arsenic compounds in well water. The DPAA showed a protonated ion at m/z 263 [M + H]+ and a loss of H2O ion at m/z 245 [M + H ? H2O]+ from protonated ion by the electrospray ionization time‐of‐flight mass spectrometry. The quantitative analysis of DPAA and PAA was performed by high‐performance liquid chromatography inductively coupled plasma mass spectrometry and the system worked well for limpid liquid samples such as well water. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
Four new Schiff bases were designed and synthesized. 5‐Methyl‐4‐(4‐aminophenylamino‐phenyl‐methylene)‐2‐phenyl‐2,4‐dihydro‐pyrazol‐3‐one (compound 1 ) and 5‐methyl‐4‐(2‐aminophenylamino‐phenyl‐methylene)‐2‐phenyl‐2,4‐dihydro‐pyrazol‐3‐one (compound 2 ) were synthesized by interaction of 1‐phenyl‐3‐methyl‐4‐benzoyl‐2‐pyrazolin‐5‐one (PMBP) with o‐ and p‐phenylenediamine, respectively; 4,4′‐(1,2‐phenylenebis(azanediyl)bis(phenylmethanylylidene))bis(3‐methyl‐1‐phenyl‐1H‐pyrazol‐5(4H)‐one) (compound 3 ) and 5‐methyl‐4‐(phenyl(2‐((3‐phenylallylidene)amino)phenylamino)methylene)‐2‐phenyl‐2,4‐dihydro‐pyrazol‐3‐one (compound 4 ) were synthesized by interaction of compound 2 with PMBP and cinnamaldehyde in an ethanolic medium, respectively. The molecular structures of the title compounds were first characterized by single‐crystal X‐ray diffraction, mass spectrometry, and elemental analysis. The title compounds were tested for antibacterial activity (Escherichia coli, Staphylococcus aureus, and Bacillus subtilis) by disk diffusion method.  相似文献   

20.
This work reports the synthesis of thiazolidin‐4‐ones and thiazinan‐4‐ones analogous to rosiglitazone, a potent antidiabetic drug. The desired compounds were synthesized with moderate to good yields by one‐pot reactions between different primary amines, mercaptoacetic or mercaptopropionic acids, and the 4‐(2‐(methyl(pyridin‐2‐yl)amino)ethoxy)benzaldehyde. The cyclocondensation reactions were carried out for 20 h, and all the products were characterized by 1H and 13C nuclear magnetic resonance spectroscopy, mass spectrometry, and one example by X‐ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号