首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ligation properties of three new upper-rim-substituted calix[4]arene ligands, 5,17-bis(hydroxymethyl)-tetra-n-butoxycalix[4]arene ((HOCH2)2-nBu4Clx, 7), 5,17-bis((diphenylphosphinito)methoxy)-tetra-n-butoxycalix[4]arene ((PPh2OCH2)2-nBu4Clx, 8), and 5,17-bis((diphenylphosphino)methyl)-tetra-n-butoxycalix[4]arene ((PPh2CH2)2-nBu4Clx, 10) are reported herein. The newly prepared compounds differ from previously reported diametrically substituted calix[4]arene derivatives in that the lower-rim substituent was n-butyl. The presence of this lower-rim substituent did not reduce the inherent crystallinity of these complexes as purification of all materials occurred via simple crystallizations. The key precursor for the syntheses of 8 and 10 was 7, acquisition of which occurred in six steps starting from tetra-tert-butylcalix[4]arene, 1. Calix[4]arene derivatives include, tetra-n-butoxycalix[4]arene (nBu4Clx, 3), 5,11,17,23-tetrabromo-tetra-n-butoxycalix[4]arene (Br4-nBu4Clx, 4), 5,17-dibromo-tetra-n-butoxycalix[4]arene (Br2-nBu4Clx, 5), 5,17-bis(formyl)-tetra-n-butoxycalix[4]arene ((CHO)2-nBu4Clx, 6), and 5,17-bis(chloromethyl)-tetra-n-butoxycalix[4]arene ((ClCH2)2-nBu4Clx, 9), all of which were synthesized using modifications of existing procedures. Characterization of all compounds occurred, when possible, using 1H, 13C, and 31P NMR, elemental analyses, FAB-MS, ESI-MS, FT-IR, and X-ray crystallography. The solid-state structures of all calix[4]arene intermediates and ligands showed that the annulus adopted the pinched-cone conformation in which the average C(5)...C(17) intraannular separation was 4.5 +/- 0.4 A. Reaction of 7 with CpTiMe3 yielded the cis-chelate, CpTi(Me)[(OCH2)2-nBu4Clx] (11), quantitatively. Data obtained using ESI-MS (positive-ion mode) confirmed the monomer formulation showed above, and 1H NMR spectra provided sufficient information to deduce the nature of the Ti coordination sphere. Reaction of 8 with cis-Cl2Pd(NCPh)2 in refluxing benzene afforded cis-Cl2Pd[(PPh2OCH2)2-nBu4Clx] (12) in good yields. The monomeric identity of this compound was verified by both X-ray crystallography and positive-ion ESI-MS. The cis-bidentate calix[4]arene ligand did not undergo any noticeable contortion upon chelation of the PdCl2 fragment. Acid-promoted decomposition of 12 occurred in the presence of adventitious HCl and gaseous HCl, and the products of this decomposition were 9 and [mu2-ClPd(PPh2OH)(PPh2O)]2. In addition, chelates of 8 that contained Mo(CO)3L (L = NCMe (14a), NCEt (14b), and CO (14c)) showed that the mode of coordination was relatively insensitive to the identity of the metal. X-ray crystallography afforded views of the solid-state structures of 14b,c and, like 12, showed that the Mo(CO)3L fragment resided above the pinched-cone of the calix[4]arene. 1H NMR revealed that C-H/pi interactions existed between L (14a,b) and a phenyl ring of the coordinated phosphinite. Finally, the bis(diphenylphosphine)calix[4]arene ligand (10) readily coordinated the Mo(CO)3L species, but the reaction did not go to completion, as evidenced by 1H NMR, even after a 5 day reaction time. Data suggest that the product is similar to that observed for 12 and 14, but the incomplete reaction complicated attempts to obtain pure material and prohibited definitive assignment of the coordination array.  相似文献   

2.
The synthesis, complete characterization, and solid state structural and solution conformation determination of calix[n]arenes (n = 4, 6, 8) is reported. A complete series of X-ray structures of the alkali metal salts of calix[4]arene (HC4) illustrate the great influence of the alkali metal ion on the solid state structure of calixanions (e.g., the Li salt of monoanionic HC4 is a monomer; the Na salt of monoanionic HC4 forms a dimer; and the K, Rb, and Cs salts exist in polymeric forms). Solution NMR spectra of alkali metal salts of monoanionic calix[4]arenes indicate that they have the cone conformation in solution. Variable-temperature NMR spectra of salts HC4.M (M = Li, Na, K, Rb, Cs) show that they possess similar coalescence temperatures, all higher than that of HC4. Due to steric hindrance from tert-butyl groups in the para position of p-tert-butylcalix[4]arene (Bu(t)C4), the alkali metal salts of monoanionic Bu(t)C4 exist in monomeric or dimeric form in the solid state. Calix[6]arene (HC6) and p-tert-butylcalix[6]arene (Bu(t)C6) were treated with a 2:1 molar ratio of M(2)CO(3) (M = K, Rb, Cs) or a 1:1 molar ratio of MOC(CH(3))(3) (M = Li, Na) to give calix[6]arene monoanions, but calix[6]arenes react in a 1:1 molar ratio with M(2)CO(3) (M = K, Rb, Cs) to afford calix[6]arene dianions. Calix[8]arene (HC8) and p-tert-butylcalix[8]arene (Bu(t)()C8) have similar reactivity. The alkali metal salts of monoanionic calix[6]arenes are more conformationally flexible than the alkali metal salts of dianionic calix[6]arenes, which has been shown by their solution NMR spectra. X-ray crystal structures of HC6.Li and HC6.Cs indicate that the size of the alkali metal has some influence on the conformation of calixanions; for example, HC6.Li has a cone-like conformation, and HC6.Cs has a 1,2,3-alternate conformation. The calix[6]arene dianions show roughly the same structural architecture, and the salts tend to form polymeric chains. For most calixarene salts cation-pi arene interactions were observed.  相似文献   

3.
The synthesis and the spectroscopic and structural characterization of lower-rim-silylated and rare-earth-metalated calix[4]arenes are presented. Hexamethyldisilazane, HN(SiMe3)2, reacted in a selective manner with [p-tert-buttylcalix[4]arene]H4 (1) in refluxing mesitylene to give the 1,3-silylated product [p-tert-butylcalix[4]arene(SiMe3)2]H2 (2) in high yield. The molecular structure of compound 2, as revealed by X-ray crystallography, shows the pinched cone conformation of the calixarene bowl, featuring hydrogen bonding between the phenylsilyl ether and phenolic oxygen atoms (O...O, 2.838 A). From the reaction of the sterically more crowded tetraphenyldimethyldisilazane, HN(SiMePh2)2, only starting material could be recovered. In contrast, tetramethyldisilazane, HN(SiHMe2)2, afforded the tetrakis-silylated product [p-tert-butylcalix[4]arene(SiHMe2)4] (3) in hexane solution at ambient temperature. A single-crystal X-ray diffraction study of compound 3 established the 1,2-alternate conformation, which is also present in solution, as indicated by 1H NMR spectroscopy. The yttrium complex Y[N(SiHMe2)2]3(THF)2 (4) exchanged all of its silylamide ligands when treated with an equimolar amount of 1 in toluene at ambient temperature to yield compound 5, as indicated by IR and NMR spectroscopy. The molecular structure of 5 revealed a centrosymmetric dimer of composition [Y(p-tert-butylcalix[4]arene(SiHMe2)(THF)]2. Three of the deprotonated phenolic oxygen atoms of the calixarene bowl bind to the metal center, two as terminal ligands and one in a bridging mode, while the fourth undergoes in situ silylation (nu(SiH) 2127 cm-1). The distorted-trigonal-bipyramidal coordination geometry is completed by a THF molecule. Bis-silylated 2 reacted with 4 to form the heteroleptic complex (Y[p-tert-butylcalix[4]arene(SiMe3)2][N(SiHMe2)2]) (6). Crystal data: C50H72O4Si2 (2), triclinic, P1, a = 12.8914(3) A, b = 14.9270(5) A, c = 15.1652(4) A, alpha = 77.293(2) degrees, beta = 65.019(2) degrees, gamma = 72.234(2) degrees, Z = 2; C52H80O4Si4 (3), triclinic, P1, a = 10.1774(2) A, b = 14.1680(2) A, c = 18.7206(2) A, alpha = 95.8195(8) degrees, beta = 95.5294(8) degrees, gamma = 98.1098(7) degrees, Z = 2; C100H132O10Si2Y2, 2(C6H6) (5), triclinic, P1, a = 13.2625(4) A, b = 14.5894(3) A, c = 17.0458(5) A, alpha = 65.0986(14) degrees, beta = 77.8786(8) degrees, gamma = 85.5125(13) degrees, Z = 1.  相似文献   

4.
赵邦屯  王璐  冶保献 《化学学报》2007,65(16):1663-1669
以对叔丁基硫桥杯[4]芳烃(1)为原料, 在碳酸钾存在下与碘甲烷反应, 生成1,3-二取代桥杯[4]芳烃(2), 其分别与1,2-二溴乙烷, 1,3-二溴丙烷在碳酸钾的存在下进行烷基化反应, 生成硫桥杯[4]芳烃衍生物34. 在氢氧化钠存在下,其与过量的含不同官能团的2-巯基-1,3,4-噻二唑反应, 生成下缘含1,3,4-噻二唑基的硫桥杯[4]芳烃衍生物5a, 5b, 6a6b, 并通过了1H NMR, 13C NMR, IR, MS和元素分析的确证. 同时, X射线分析确定了硫桥杯[4]芳烃35a的晶体结构.  相似文献   

5.
The X-ray crystal structure of the p-sulfonatocalix[5]arene(5)(-) anion (1b) in the form of the dimeric hydrate Na(10)[p-sulfonatocalix[5]arene](2).33.5H(2)O (2) is reported. The reactions of 1b with a number of transition metal salts to form transition metal bridged bis(calixarene) inclusion complexes have also been investigated. The X-ray crystal structure of the "Co(H(2)O)(4)(2+)" bridged species Na(8)[Co(H(2)O)(4)(p-sulfonatocalix[5]arene)(2)].2CH(3)C(O)N(CH(3))(2).37H(2)O (3) which incorporates a "supercavity" large enough to encompass 2 N,N-dimethylacetamide (dma) guest molecules as well as ca. 15 water molecules and Na(+) ions is reported. Crystal data are as follows: for 2, monoclinic space group P2(1)/c, Z = 4, a = 22.0644(4), b = 19.1180(3), c = 27.7834(4) ?, beta = 91.780(1), V = 11714.1(5) ?(3); complex 3, orthorhombic space group Pnma, Z = 4, a = 22.2271(5), b = 30.1693(6), c = 18.8503(4) ?, V = 12640.6(5) ?(3).  相似文献   

6.
采用核磁波谱和等温微量热滴定等手段研究了磺化杯[4]芳烃与3个双正电荷季铵盐相互作用的键合比、 键合模式以及热力学参数. 结果表明, 磺化杯[4]芳烃与3个双正电荷季铵盐以不同的键合模式形成1: 1络合物, 其键合常数均超过105 L/mol, 键合作用主要由焓变驱动, 同时伴随着微弱的正负熵变.  相似文献   

7.
对叔丁基(硫杂)杯[4]芳烃-1,3-二醛基衍生物4a和4b与苯基氨基硫脲进行“1+2”缩合反应, 合成了杯[4]芳烃缩氨基硫脲衍生物5a和5b, 产率为84%和85%. 化合物4a和4b与1,6-己基双氨基脲发生“1+1”缩合反应, 合成了杯[4]芳烃双缩氨基脲桥联衍生物6a和6b, 产率为83%和80%. 新化合物的结构与构象经元素分析、质谱、核磁共振谱等表征证实.  相似文献   

8.
赵邦屯  王璐  冶保献 《有机化学》2006,26(11):1562-1565
以对叔丁基杯[4]芳烃(1)为原料, 分别与1,2-二溴乙烷、1,3-二溴丙烷在碳酸钾的存在下进行选择性烷基化反应, 生成杯[4]芳烃衍生物23. 在氢氧化钠存在下, 化合物23与过量的含不同官能团的2-巯基噻二唑反应, 生成下缘含噻二唑基的杯芳烃衍生物4a4c, 5a5c, 其结构经1H NMR, 13C NMR, IR, MS和元素分析确证.  相似文献   

9.
A variety of novel calix[4]arene-incorporating crown ethers with or without intramolecular hydrogen bonding have been prepared by two efficient methods and utilized as donor rings to assemble calix[4]arene [2]catenanes based on pi-stacking interaction between hydroquinone and bipyridinium units. Treatment of calix[4]arene crown ethers 4, 10a, or 10b, whose cone conformation was fixed by intramolecular hydrogen bonding within the calix[4]arene moiety, with dicationic salt 15 x 2PF6 and dibromide 16 afforded the corresponding [2]catenanes 17a x 4PF6, 17b x 4PF6, and 17c x 4PF6 in 20%, 53%, and 55% yields, respectively, whereas from the reactions of 15 x 2PF6 and dibromide 16 in the presence of conformationally flexible 11 or 12 with a cone conformation kept by two propyl groups, [2]catenanes 18 x 4PF6 and 19 x 4PF6 were obtained in 12% and 6% yields. [2]Catenanes 21a x 4Cl, 21b x 4Cl, and 21c x 4Cl, incorporating calix[4]arene in both the donor and acceptor rings, were also successfully assembled from 10a or 10b, 16, and dicationic salts 20a x 2PF6 or 20b x 2PF6. The dynamic 1H NMR and absorption spectra of the [2]catenanes have been investigated, which revealed a strongest donor-acceptor interaction in 17a x 4PF6 and that the cone [2]catenanes 17a-c x 4PF6 can isomerize to the partial cone isomer at high temperature. The difference of the dynamic properties of these catenanes was discussed. The results demonstrate that catenation is one new general method to change the conformational distributions of calix[4]arenes.  相似文献   

10.
The synthesis of A,D-m-xylylene-bridged calix[6]arenes 1-8 functionalized at position 5 of the spacer arm is described. The cone conformation of the new bridged calix[6]arenes has been established by (1)H and (13)C NMR. The X-ray structure of compound 6 confirmed the cone conformation also in the solid state. Compounds 9 and 10, which are branched-like structures, were obtained by reductive amination of 5-amino-A,D-m-xylylene-bridged-B,C,E,F-tetra-O-ethylcalix[6]arene 7 with diformyl calix[4]arene and CTV derivatives 22 and 24, respectively.  相似文献   

11.
Abstraction of methide from the beta-diketiminato supported organoscandium complex [L1ScMe2]2 using the trityl borate activator [Ph3C][B(C6F5)4] in arene solvents gives solvent separated ion pairs in which the arene (C6H5Br, 1a; C6H6, 1b; C7H8, 1c; 1,3,5-Me3C6H3, 1d) is coordinated to the cationic scandium center in an eta6 bonding mode. L1 incorporates methyl groups in the 2,4 positions of the ligand backbone and bulky 2,6-diisopropylphenyl groups on the nitrogen atoms. The relative binding strength of the arenes is C6H5Br < C6H6 < 1,3,5-Me3C6H3 < C7H8. Ion pairs 1a and 1c have been characterized crystallographically, and the C6H5Br derivative is notable for its eta6 bonding mode in preference to the more common eta1 bonding mode via the halogen atom. The kinetics of displacement of mesitylene by toluene (1d --> 1c) yield activation parameters of DeltaH = 21.4(6) kcal mol-1 and DeltaS = 6(1) cal mol-1 K-1. In combination with the observed lack of dependence of [toluene] on the rate of displacement, these data suggest a mechanism involving partial dissociation of the coordinated arene, followed by attack of the incoming arene. This chemistry has relevance to the role of these solvent separated ion pairs in olefin polymerization processes and presents a rare opportunity for the detailed study of these ephemeral species.  相似文献   

12.
赵邦屯  周振  颜振宁 《有机化学》2009,29(10):1682-1686
在碳酸钾存在下, 对叔丁基硫桥杯[4]芳烃(1)分别与端基二溴代烷和碘甲烷反应, 生成硫桥杯[4]芳烃衍生物2~4. 含端基溴代的硫桥杯[4]芳烃衍生物2和4分别与2-巯基苯并噁唑在碳酸钾存在下反应, 生成硫桥杯[4]芳烃衍生物5a~5d. 通过1H NMR, 13C NMR, IR, MS和元素分析等手段对产物进行了表征. 同时, X射线分析确定了硫桥杯[4]芳烃5b的晶体结构.  相似文献   

13.
The calix[4]arene platform was used for the syntheses of novel rhenium(V) complexes, that may have potential applications as radiopharmaceuticals. The reaction of ReO(PPh3)2Cl3 with tetradentate N2O2-calix[4]arene ligand 8 in ethanol gave the novel mixed-ligand rhenium complex 9 with the structure ReO(N2O2-calix)OEt. The configuration was elucidated by using a number of 1H NMR techniques. In 9, the ethoxy ligand could be easily and quantitatively exchanged for another monodentate ligand to give complex 12. Tetradentate N2S2-calix[4]arene ligand 15 formed the rhenium complex 16 either via reaction with ReO(PPh3)2Cl3 in an organic solvent or by reaction with rhenium gluconate in an aqueous solution. Complex 16 showed good stability in phosphate-buffered saline solution (37 degrees C, 5 d). The crystal structures of a mono- and a bimetallic complex were determined. The bimetallic N2O2-calixarene complex dimer 11 crystallized in the monoclinic space group C2/c, with a = 38.963(5) A, b = 23.140(6) A, c = 27.382(6) A, beta = 128.456(10) degrees, V = 19,333(7) A3, Z = 8, and final R = 0.0519. The monometallic N2S2 model complex 17 crystallized in the monoclinic space group Cc, with a = 15.715(2) A, b = 12.045(2) A, c = 20.022(3) A, beta = 94.863(12) degrees, V = 3776.3(10) A3, Z = 4, and final R = 0.0342.  相似文献   

14.
The ring-opening reactions of a series of sila[1]ferrocenophanes with protic acids of anions with various degrees of noncoordinating character have been explored. Ferrocenyl-substituted silyl triflates FcSiMe2OTf (5 a) and Fc(3)SiOTf (5 b) (Fc=(eta5-C5H4)Fe(eta5-C5H5)) were synthesized by means of HOTf-induced ring-opening protonolysis of strained sila[1]ferrocenophanes fcSiMe2 (3 a) and fcSiFc2 (3 b) (fc=(eta5-C5H4)2Fe). Reaction of 3 a and 3 b with HBF4 yielded fluorosubstituted ferrocenylsilanes FcSiMe2F (6 a) and Fc3SiF (6 b) and suggested the intermediacy of a highly reactive silylium ion capable of abstracting F- from the [BF4]- ion. Generation of the solvated silylium ions [FcSiMe2THF]+ (7a+), [Fc3SiTHF]+ (7b+) and [FcSiiPr2OEt2]+ (7c+) at low temperatures, by reaction of the corresponding sila[1]ferrocenophanes (3 a, 3 b, and fcSiiPr2 (3 c), respectively) with H(OEt2)(S)TFPB (S=Et2O or THF; TFPB=tetrakis[3,5-bis(trifluoromethyl)phenyl]borate) was monitored by using low-temperature 1H, 13C, and 29Si NMR spectroscopy. In situ reaction of 7a+, 7b+, and 7c+ with excess pyridine generated [FcSiMe2py]+ (8a+), [Fc3Sipy]+ (8b+), and [FcSiiPr2py]+ (8c+), respectively, as observed by 1H, 13C, and 29Si NMR spectroscopy. A preparative-scale reaction of 3 b with H(OEt2)(THF)TFPB at -60 degrees C and subsequent addition of excess pyridine gave isolable red crystals of 8b-[TFPB]CHCl3, which were characterized by 1H and 29Si NMR spectroscopy as well as by single-crystal X-ray diffraction.  相似文献   

15.
The synthesis and structural characterization of the first [1.1]chromarenophanes and the first [1.1]molybdarenophanes are described. A salt-metathesis reaction of [2-(Me 2NCH 2)C 6H 4]AlCl 2 with freshly prepared [Cr(LiC 6H 5) 2].TMEDA (TMEDA = N, N, N', N'-tetramethylethylenediamine) resulted in the dialumina[1.1]chromarenophane [{2-(Me 2NCH 2)C 6H 4}Al(eta (6)-C 6H 5) 2Cr] 2 ( 2a). The poor solubility of 2a in organic solvents prompted us to synthesize the new intramolecularly coordinated aluminum- and gallium dichlorides [5- tBu-2-(Me 2NCH 2)C 6H 3]ECl 2 [E = Al ( 3a), Ga ( 3b)] in which the phenyl group was equipped with a tert-butyl group. Salt-metathesis reactions of 3a and 3b, respectively, with freshly prepared [M(LiC 6H 5) 2].TMEDA (M = Cr, Mo) resulted in four new [1.1]metallarenophanes of the general type [{5- tBu-2-(Me 2NCH 2)C 6H 3}E(eta (6)-C 6H 5) 2M] 2 [E = Al, M = Cr ( 4a); E = Ga, M = Cr ( 4b); E = Al, M = Mo ( 5a); E = Ga, M = Mo ( 5b)]. 2a, 4a, b, and 5a, b have been structurally characterized by single-crystal analysis [ 2a.1/2C 6H 12: C 48H 56Al 2Cr 2N 2, monoclinic, P2 1/ c, a = 9.9117(9) A, b = 19.9361(16) A, c = 10.638(2) A, alpha = 90 degrees , beta = 112.322(5) degrees , gamma = 90 degrees , Z = 2; 4a.2C 6H 6: C 62H 72Al 2Cr 2N 2, monoclinic, P2 1/ c, a = 10.9626(9) A, b = 19.3350(18) A, c = 12.4626(9) A, alpha = 90 degrees , beta = 100.756(5) degrees , gamma = 90 degrees , Z = 2; 4b.2C 6H 6: C 62H 72Cr 2Ga 2N 2, monoclinic, P2 1/ c, a = 10.8428(2) A, b = 19.4844(4) A, c = 12.4958(2) A, alpha = 90 degrees , beta = 100.6187 degrees , gamma = 90 degrees , Z = 2; 5a.2C 6H 6: C 62H 72Al 2Mo 2N 2, triclinic, P1, a = 10.4377(4) A, b = 11.6510(4) A, c = 11.6514(4) A, alpha = 73.545(3) degrees , beta = 89.318(2) degrees , gamma = 76.120(2) degrees , Z = 1; 5b.2C 6H 6: C 62H 72Ga 2Mo 2N 2, triclinic, P1, a = 10.3451(5) A, b = 11.6752(6) A, c = 11.6900(5) A, alpha = 73.917(3) degrees , beta = 89.550(3) degrees , gamma = 76.774(2) degrees , Z = 1]. All five [1.1]metallarenophanes 2a, 4a, b, and 5a, b crystallize as anti isomers with both Me 2N donor groups in exo positions ( C i point group symmetry). The new [1.1]metallarenophanes show NMR spectra that can be interpreted as being caused by time-averaged C 2 h symmetrical species, which is consistent with the findings of their molecular structures in the solid state. Variable-temperature (1)H NMR measurements for 4a, b and 5a, b (500 MHz; -90 to 90 degrees C) revealed only peak broadening in the lower temperature range of -70 to -90 degrees C. (1)H NMR saturation transfer difference experiments did not show an expected anti-to-anti isomerization, rendering the new [1.1]metallacyclophanes rigid on the NMR time scale. Electrochemical measurements were performed for 4a, b and 5a, b. However, reproducible cyclic voltammograms could only be obtained for the two gallium species 4b and 5b, revealing the expected weak communication between the two transition-metal atoms in both compounds (class II).  相似文献   

16.
The consecutive syntheses of imidazoles 1-(4-X-C(6)H(4))-4,5-R(2)-(c)C(3)HN(2) (3a, X = Br, R = H; 3b, X = I, R = Me; 3c, X = H, R = Me; 5, X = Fc, R = H; 7, X = C≡CFc, R = H; 9, X = C(6)H(5), R = Me; Fc = Fe(η(5)-C(5)H(4))(η(5)-C(5)H(5))), phosphino imidazoles 1-(4-X-C(6)H(4))-2-PR'(2)-4,5-R(2)-(c)C(3)N(2) (11a-k; X = Br, I, Fc, FcC≡C, Ph; R = H, Me; R' = Ph, (c)C(6)H(11), (c)C(4)H(3)O), imidazolium salts [1-(4-X-C(6)H(4))-3-R'-4,5-R(2)-(c)C(3)HN(2)]I (16a; X = Br, R = H, R' = n-Bu; 16b, X = Br, R = H, R' = n-C(8)H(17); 16c, X = I, R = Me, R' = n-C(8)H(17), 16d, X = H, R = Me, R' = n-C(8)H(17)) and phosphino imidazolium salts [1-C(6)H(5)-2-PR'(2)-3-n-C(8)H(17)-4,5-Me(2)-(c)C(3)N(2)]PF(6) (17a, R' = C(6)H(5); 17b, R' = (c)C(6)H(11)) or [1-(4-P(C(6)H(5))(2)-C(6)H(4))-3-n-C(8)H(17)-4,5-Me(2)-(c)C(3)HN(2)]PF(6), (20) and their selenium derivatives 1-(4-X-C(6)H(4))-2-P([double bond, length as m-dash]Se)R'(2)-4,5-R(2)-(c)C(3)N(2) (11a-Se-f-Se; X = Br, I; R = H, Me; R' = C(6)H(5), (c)C(6)H(11), (c)C(4)H(3)O) are reported. The structures of 11a-Se and [(1-(4-Br-C(6)H(4))-(c)C(3)H(2)N(2)-3-n-Bu)(2)PdI(2)] (19) in the solid state were determined. Cyclovoltammetric measurements were performed with the ferrocenyl-containing molecules 5 and 7 showing reversible redox events at E(0) = 0.108 V (ΔE(p) = 0.114 V) (5) and E(0) = 0.183 V (ΔE(p) = 0.102 V) (7) indicating that 7 is more difficult to oxidise. Imidazole oxidation does not occur up to 1.3 V in dichloromethane using [(n-Bu)(4)N][B(C(6)F(5))(4)] as supporting electrolyte, whereas an irreversible reduction is observed between -1.2 - -1.5 V. The phosphino imidazoles 11a-k and the imidazolium salts 17a,b and 20, respectively, were applied in the Suzuki C-C cross-coupling of 2-bromo toluene with phenylboronic acid applying [Pd(OAc)(2)] as palladium source. Depending on the electronic character of 11a-k, 17a,b and 20 the catalytic performance of the in situ generated catalytic active species can be predicted. As assumed, more electron-rich phosphines with their higher donor capability show higher activity and productivity. Additionally, 11e was applied in the coupling of 4-chloro toluene with phenylboronic acid showing an excellent catalytic performance when compared to catalysts used by Fu, Beller and Buchwald. Furthermore, 11e is eligible for the synthesis of sterically hindered biaryls under mild reaction conditions. C-C Coupling reactions with the phosphino imidazolium salts 17b and 20 in ionic liquids [BMIM][PF(6)] and [BDMIM][BF(4)] were performed, showing less activity than in common organic solvents.  相似文献   

17.
The existence of sitting-atop metalloporphyrin complexes, the proposed intermediates in the metalation of free-base porphyrins, has been explored via the microscopic reverse reaction, i.e., protonation of metalloporphyrins with a strong acid. The reaction of M(Tp-TP) (M = Zn, Cu, Ni; Tp-TP = dianion of tetra-p-tolylporphyrin) with mesitylenium carborane salts produced only the demetalated porphyrin in its diprotonated form, [H4Tp-TP][carborane]2 (carborane = CHB11H5Cl6-, CHB11H5Br6-, CHB11Cl11-). In arene solvents, the H4Tp-TP2+ dication shows an unusually upfield shifted 1H NMR resonance at ca. -6 ppm, which X-ray crystallography reveals to arise from N-H- - -pi hydrogen bonding of the acidic protons to arene solvent molecules.  相似文献   

18.
Bridging of p-tert-butylthiacalix[4]arene afforded 1,3-dihydroxythiacalix[4]arene-monocrown-5 (3b), 1,2-alternate thiacalix[4]arene-biscrown-4 and -5 (4a,b), and 1,3-alternate thiacalix[4]arene-biscrown-5 and -6 (5a,b), depending on the metal carbonates and oligoethylene glycol ditosylates used. Starting from 1,3-dialkylated thiacalix[4]arenes, the corresponding bridging reaction gave 1,3-alternate, partial-cone, and cone conformers 10-19, depending on the substituents present. Temperature-dependent studies revealed that the conformationally flexible 1,3-dimethoxythiacalix[4]arene-crowns 10a-c exclusively occupy the 1,3-alternate conformation. Demethylation exclusively gave the cone 1,3-dihydroxythiacalix[4]arene-crowns (3a,c), which could not be obtained by direct bridging of thiacalix[4]arene. The different structures were assigned on the basis of several X-ray crystal structures and extensive 2-D (1)H NMR studies.  相似文献   

19.
Reactions of UCl4 with calix[n]arenes (n = 4, 6) in THF gave the mononuclear [UCl2(calix[4]arene - 2H)(THF)2].2THF (.2THF) and the bis-dinuclear [U2Cl2(calix[6]arene - 6H)(THF)3]2.6THF (.6THF) complexes, respectively, while the mono-, di- and trinuclear compounds [Hpy]2[UCl3(calix[4]arene - 3H)].py (.py), [Hpy](4)[U2Cl6(calix[6]arene - 6H)].3py (.3py), [Hpy]3[U2Cl5(calix[6]arene - 6H)(py)].py (.py) and [Hpy]6[U3Cl11(calix[8]arene - 7H)].3py (.3py) were obtained by treatment of UCl4 with calix[n]arenes (n = 4, 6, 8) in pyridine. The sodium salt of calix[8]arene reacted with UCl4 to give the pentanuclear complex [U{U2Cl3(calix[8]arene - 7H)(py)5}2].8py (.8py). Reaction of U(acac)4 (acac = MeCOCHCOMe) with calix[4]arene in pyridine afforded the mononuclear complex [U(acac)2(calix[4]arene - 2H)].4py (.4py) and its treatment with the sodium salt of calix[8]arene led to the formation of the 1D polymer [U2(acac)6(calix[8]arene - 6H)(py)4Na4]n. The sandwich complex [Hpy]2[U(calix[4]arene - 3H)2][OTf].4py (.4py) was obtained by treatment of U(OTf)4 (OTf = OSO2CF3) with calix[4]arene in pyridine. All the complexes have been characterized by X-ray diffraction analysis.  相似文献   

20.
The reaction of 2‐heteroaryl‐substituted trimethinium salts (A, B, and C) with aromatic 1,2‐diamines ( a , b , c , d , and e ) in acetonitrile/acetic acid leads to 6,13‐disubstituted 1,4,8,11‐tetraaza[14]annulene derivatives ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 ). The UV–vis spectral behavior of these compounds was examined in acetonitrile. Elemental analysis, IR, 1H‐NMR, 13C‐NMR, and mass spectra confirm the molecular structure of the newly synthesized compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号