首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Importance of the CH/pi interaction on the structure and function of the photoactive yellow protein (PYP) was substantiated. Focusing on the phenyl ring of Phe6 adjacent to the alkyl chain of Lys123, the mutants for these amino acid residues were characterized. The results demonstrated that the mutants lacking the pi-electron at position 6 or the alkyl chain at position 123 show substantial malfunction. This is a clear example that single CH/pi weak interaction plays a crucial role in the normal action of the protein.  相似文献   

2.
The role of the array of aromatic amino acid side chains located close to the chromophore binding loop of photoactive yellow protein (PYP) was studied using the alanine-substitution mutagenesis. Phe92, Tyr94, Phe96 and Tyr98 were replaced with alanine (F92A, Y94A, F96A and Y98A, respectively), then these mutants were characterized by UV-visible absorption spectra, circular dichroism (CD) spectra, thermal stability and photocycle kinetics. Absorption maxima of F92A, Y94A, F96A and Y98A were 444, 442, 439 and 447 nm, respectively, different to wild type (WT) at 446 nm. Far-UV CD spectra of mutants other than F92A were different from WT, indicating that Tyr94, Phe96 and Tyr98 maintain the native secondary structure of PYP. Mid-point temperatures of thermal denaturation of F92A, Y94A and F96A, estimated by the CD signal at 222 nm, were 5-10 degrees C lower than WT. Time constants of the photocycle estimated by flash-induced absorbance change were 0.36 s for WT and 1.4 s for Y98A, however, 100, 30 and 3000 times slower than WT for F92A, Y94A and F96A, respectively. Tyr98 is located in the loop region, whereas Phe92, Tyr94 and Phe96 are incorporated in the beta4 strand, showing that aromatic amino acid residues in the beta-sheet regulate the absorption spectrum, thermal stability and photocycle of PYP. Aromatic rings of Phe92, Tyr94 and Phe96 lie nearly perpendicular to the aromatic ring of Phe75 or chromophore. Possible weak hydrogen bonds between the aromatic ring hydrogen and pi-electrons of these residues are discussed.  相似文献   

3.
The trans-to-cis photoisomerization of the p-coumaroyl chromophore of photoactive yellow protein (PYP) triggers the photocycle. Met100, which is located in the vicinity of the chromophore, is a key residue for the cis-to-trans back-isomerization of the chromophore, which is a rate-determining reaction of the PYP photocycle. Here we characterized the photocycle of the Met100Ala mutant of PYP (M100A) by low temperature UV-visible spectroscopy. Irradiation of M100A at 80 K yielded a 380 nm species (M100A(BL)), while the corresponding intermediate of wild type (WT; PYP(BL)) is formed above 90 K. The amounts of redshifted intermediates produced from M100A (M100A(B') and M100A(L)) were substantially less than those from WT. While the near-UV intermediate (PYP(M)) is not formed from WT in glycerol samples at low temperature, M100A(M) was clearly observed above 190 K. These alterations of the photocycle of M100A were explained by the shift in the equilibrium between the intermediates. The carbonyl oxygen of the thioester linkage of the cis-chromophore in the photocycle intermediates is close to the phenyl ring of Phe96 (<3.5 A), which would be displaced by the mutation of Met100. These findings imply that the interaction between chromophore and amino acid residues near Met100 is altered during the early stage of the PYP photocycle.  相似文献   

4.
To study the role of the C-terminal domains in the photocycle of a light sensor histidine kinase (Ppr) having a photoactive yellow protein (PYP) domain as the photosensor domain, we analyzed the photocycles of the PYP domain of Ppr (Ppr-PYP) and full-length Ppr. The gene fragment for Ppr-PYP was expressed in Escherichia coli, and it was chemically reconstituted with p-coumaric acid; the full-length gene of Ppr was coexpressed with tyrosine ammonia-lyase and p-coumaric acid ligase for biosynthesis in cells. The light/dark difference spectra of Ppr-PYP were pH sensitive. They were represented as a linear combination of two independent difference spectra analogous to the PYP(L)/dark and PYP(M)/dark difference spectra of PYP from Halorhodospira halophila, suggesting that the pH dependence of the difference spectra is explained by the equilibrium shift between the PYP(L)- and PYP(M)-like intermediates. The light/dark difference spectrum of Ppr showed the equilibrium shift toward PYP(L) compared with that of Ppr-PYP. Kinetic measurements of the photocycles of Ppr and Ppr-PYP revealed that the C-terminal domains accelerate the recovery of the dark state. These observations suggest an interaction between the C-terminal domains and the PYP domain during the photocycle, by which light signals captured by the PYP domain are transferred to the C-terminal domains.  相似文献   

5.
Numerous single‐site mutants of photoactive yellow protein (PYP) from Halorhodospira halophila and as well as PYP homologs from other species exhibit a shoulder on the short wavelength side of the absorbance maximum in their dark‐adapted states. The structural basis for the occurrence of this shoulder, called the “intermediate spectral form,” has only been investigated in detail for the Y42F mutation. Here we explore the structural basis for occurrence of the intermediate spectral form in a M121E derivative of a circularly permuted H. halophila PYP (M121E‐cPYP). The M121 site in M121E‐cPYP corresponds to the M100 site in wild‐type H. halophila PYP. High‐resolution NMR measurements with a salt‐tolerant cryoprobe enabled identification of those residues directly affected by increasing concentrations of ammonium chloride, a salt that greatly enhances the fraction of the intermediate spectra form. Residues in the surface loop containing the M121E (M100E) mutation were found to be affected by ammonium chloride as well as a discrete set of residues that link this surface loop to the buried hydroxyl group of the chromophore via a hydrogen bond network. Localized changes in the conformational dynamics of a surface loop can thereby produce structural rearrangements near the buried hydroxyl group chromophore while leaving the large majority of residues in the protein unaffected.  相似文献   

6.
The photoactive yellow protein (PYP) is a bacterial photosensor containing a para-coumaryl thioester chromophore that absorbs blue light, initiating a photocycle involving a series of conformational changes. Here, we present computational studies to resolve uncertainties and controversies concerning the correspondence between atomic structures and spectroscopic measurements on early photocycle intermediates. The initial nanoseconds of the PYP photocycle are examined using time-dependent density functional theory (TDDFT) to calculate the energy profiles for chromophore photoisomerization and proton transfer, and to calculate excitation energies to identify photocycle intermediates. The calculated potential energy surface for photoisomerization matches key, experimentally determined, spectral parameters. The calculated excitation energy of the photocycle intermediate cryogenically trapped in a crystal structure by Genick et al. [Genick, U. K.; Soltis, S. M.; Kuhn, P.; Canestrelli, I. L.; Getzoff, E. D. Nature 1998, 392, 206-209] supports its assignment to the PYP(B) (I(0)) intermediate. Differences between the time-resolved room temperature (298 K) spectrum of the PYP(B) intermediate and its low temperature (77 K) absorbance are attributed to a predominantly deprotonated chromophore in the former and protonated chromophore in the latter. This contrasts with the widely held belief that chromophore protonation does not occur until after the PYP(L) (I(1) or pR) intermediate. The structure of the chromophore in the PYP(L) intermediate is determined computationally and shown to be deprotonated, in agreement with experiment. Calculations based on our PYP(B) and PYP(L) models lead to insights concerning the PYP(BL) intermediate, observed only at low temperature. The results suggest that the proton is more mobile between Glu46 and the chromophore than previously realized. The findings presented here provide an example of the insights that theoretical studies can contribute to a unified analysis of experimental structures and spectra.  相似文献   

7.
We have examined the impact of C-H...pi and hydrophobic interactions in the diagonal position of a beta-hairpin peptide through comparison of the interaction of Phe, Trp, or Cha (cyclohexylalanine) with Lys or Nle (norleucine). NMR studies, including NOESY and chemical shift perturbation studies, of the Lys side chain indicates that Lys interacts in a specific geometry with Phe or Trp through the polarized C epsilon. In contrast, Nle does not interact in a specific manner with the diagonal aromatic residue. Thermal denaturation provides additional support that Lys and Nle interact in fundamentally different manners. Folding of the peptide with a diagonal Trp...Lys interaction was found to be enthalpically driven, whereas the peptide with a diagonal Trp...Nle interaction displayed cold denaturation, as did the control peptide with a diagonal Cha...Nle interaction, indicating different driving forces for interaction of Lys and Nle with Trp. These findings have significant implications for specificity in protein folding and de novo protein design.  相似文献   

8.
Molecular dynamics (MD) simulations and free energy component analysis have been performed to evaluate the molecular origins of the 5.5 kcal/mol destabilization of the complex formed between the N-terminal RNP domain of U1A and stem loop 2 of U1 snRNA upon mutation of a conserved aromatic residue, Phe56, to Ala. MD simulations, including counterions and water, have been carried out on the wild type and Phe56Ala peptide-stem loop 2 RNA complexes, the free wild type and Phe56Ala peptides, and the free stem loop 2 RNA. The MD structure of the Phe56Ala-stem loop 2 complex is similar to that of the wild type complex except the stacking interaction between Phe56 and A6 of stem loop 2 is absent and loop 3 of the peptide is more dynamic. However, the MD simulations predict large changes in the structure and dynamics of helix C and increased dynamic range of loop 3 for the free Phe56Ala peptide compared to the wild type peptide. Since helix C and loop 3 are highly variable regions of RNP domains, this indicates that a significant contribution to the reduced affinity of the Phe56Ala peptide for RNA results from cooperation between highly conserved and highly variable regions of the RNP domain of U1A. Surprisingly, these structural effects, which are manifested as cooperative free energy changes, occur in the free peptide, rather than in the complex, and are revealed only by study of both the initial and final states of the complexation process. Free energy component analysis correctly accounts for the destabilization of the Phe56Ala-stem loop 2 complex, and indicates that approximately 80% of the destabilization is due to the loss of the stacking interaction and approximately 20% is due to differences in U1A adaptation.  相似文献   

9.
The carp mitochondrial URFA6L gene consists of 165 base pairs. The overall structural organization of the gene is very similar to that of the Xenopus URFA6L gene. Their nucleotide sequences exhibit 68% homology. The carp URFA6L gene encodes a protein of 54 amino acids. The amino acid composition of the protein is unusual because almost half of the residues consist of 5 hydrophobic amino acids (proline, tryptophan, leucine, isoleucine and tyrosine). A comparison between the amino acid sequences of 5 vertebrate URFA6L proteins and the yeast ATPase 8 showed that they have weak but very important common structural features, suggesting that the vertebrate URFA6L proteins may function as ATPase8. The nucleotide sequence of the lysine tRNA gene from carp has been determined and represented in clover-leaf secondary structure. Similar to amphibian and mammalian mitochondrial tRNA(Lys) genes, the carp mitochondrial tRNA(Lys) gene also has some unusual structural features as compared with its cytoplasmic counterpart. A comparison between the nucleotide sequences of the tRNA(Lys) gene from 7 vertebrates showed that the most conservative portions are the anticodon loop, nucleotides 8 and 9, the variable loop, the anticodon stem and the aminoacyl stem. The least conservative portions are the D-loop and the T-loop. These structural features may show that the mitochondrial tRNA(Lys) has a different interaction with mitochondrial ribosome.  相似文献   

10.
The carp mitochondrial URFA6L gene consists of 165 base pairs. The overall structural organization of the gene is very similar to that of the Xenopus URFA6L gene. Their nucleotide sequences exhibit 68% homology. The carp URFA6L gene encodes a protein of 54 amino acids. The amino acid composition of the protein is unusual because almost half of the residues consist of 5 hydrophobic amino acids(proline, tryptophan, leueine, isoleueine and tyrosine). A comparison between the amino acid sequences of 5 vertebrate URFA6L proteins and the yeast ATPase8 showed that they have weak but very important common structural features, suggesting that the vertebrate URFA6L proteins may function asATPase8. The nucleotide sequence of the lysine tRNA gene from carp has been determined and represented in cloverleaf secondary structure. Similar to amphibian and mammalian mitochondrial tRNA~(Lys) genes, the carp mitochondrial tRNA~(Tys) gene also has some unusual structural features as compared with its cytoplasmic counterpart  相似文献   

11.
The photocycle in photoactive yellow protein (PYP) crystals was studied by single-crystal absorption spectroscopy with experimental setups for low-temperature and time-resolved measurements. Thin and flat PYP crystals, suitable for light absorption studies, were obtained using special crystallization conditions. Illumination of PYP crystals at 100 K led to the formation of a photostationary state, which includes at least one hypsochromic and one bathochromic photoproduct that resemble PYP(H) and PYP(B), respectively. The effect of temperature, light color and light pulse duration on the occupancy of these low-temperature photoproducts was determined and appeared similar to that observed in solution. At room temperature a blueshifted photocycle intermediate was identified that corresponds to the blueshifted state of PYP (pB). Kinetic studies show that the decay of this blueshifted intermediate is biphasic at -12 degrees C and 15-fold faster than that observed in solution at room temperature. These altered pB decay kinetics confirm a model that holds that the photocycle in crystals takes place in a shortcut version. In this version the key structural events of the photocycle, such as photoisomerization and reversible protonation of the chromophore, take place, but large conformational changes in the surrounding protein are limited by constraints imposed by the crystal lattice.  相似文献   

12.
Photoactive yellow protein (PYP) is a bacterial blue light photoreceptor, and photoexcitation of dark-state PYP (PYP(dark)) triggers a photocycle that involves several intermediate states. We report the ultraviolet resonance Raman spectra of PYP with 225-250 nm excitations and investigate protein structural changes accompanying the formation of the putative signaling state denoted PYP(M). The PYP(M)-PYP(dark) difference spectra show several features of tyrosine and tryptophan, indicating environmental changes for these amino acid residues. The tyrosine difference signals show small upshifts with intensity changes in Y8a and Y9a bands. Although there are five tyrosine residues in PYP, Tyr42 and Tyr118 are suggested to be responsible for the difference signals on the basis of a global fitting analysis of the difference spectra at different excitation wavelengths and the crystal structure of PYP(dark). A further experiment on the Thr50-->Val mutant supports environmental changes in Tyr42. The observed upshift of the Y8a band suggests a weaker or broken hydrogen bond between Tyr42 and the chromophore in PYP(M). In addition, a reorientation of the OH group in Tyr42 is suggested from the upshift of the Y9a band. For tryptophan, the Raman bands of W3, W16, and W18 modes diminish in intensity upon formation of PYP(M). The loss of intensities is attributable to an exposure of tryptophan in PYP(M). PYP contains only one tryptophan (Trp119) that is located more than 10 A from the active site. Thus the observed changes are indicative of global conformational changes in protein during the transition from PYP(dark) to PYP(M). These results are in line with the currently proposed photocycle mechanism of PYP.  相似文献   

13.
Of the 10 photoactive yellow protein (PYPs) that have been characterized, the two from Rhodobacter species are the only ones that have an additional intermediate spectral form in the resting state (λmax = 375 nm), compared to the prototypical Halorhodospira halophila PYP. We have constructed three chimeric PYP proteins by replacing the first 21 residues from the N‐terminus (Hyb1PYP), 10 from the β4–β5 loop (Hyb2PYP) and both (Hyb3PYP) in Hhal PYP with those from Rb. capsulatus PYP. The N‐terminal chimera behaves both spectrally and kinetically like Hhal PYP, indicating that the Rcaps N‐terminus folds against the core of Hhal PYP. A small fraction shows dimerization and slower recovery, possibly due to interaction at the N‐termini. The loop chimera has a small amount of the intermediate spectral form and a photocycle that is 20 000 times slower than Hhal PYP. The third chimera, with both regions exchanged, resembles Rcaps PYP with a significant amount of intermediate spectral form (λmax = 380 nm), but has even slower kinetics. The effects are not strictly additive in the double chimera, suggesting that what perturbs one site, affects the other as well. These chimeras suggest that the intermediate spectral form has its origins in overall protein stability and solvent exposure.  相似文献   

14.
The CCSD(T) level interaction energies of CH/pi complexes at the basis set limit were estimated. The estimated interaction energies of the benzene complexes with CH(4), CH(3)CH(3), CH(2)CH(2), CHCH, CH(3)NH(2), CH(3)OH, CH(3)OCH(3), CH(3)F, CH(3)Cl, CH(3)ClNH(2), CH(3)ClOH, CH(2)Cl(2), CH(2)FCl, CH(2)F(2), CHCl(3), and CH(3)F(3) are -1.45, -1.82, -2.06, -2.83, -1.94, -1.98, -2.06, -2.31, -2.99, -3.57, -3.71, -4.54, -3.88, -3.22, -5.64, and -4.18 kcal/mol, respectively. Dispersion is the major source of attraction, even if substituents are attached to the carbon atom of the C-H bond. The dispersion interaction between benzene and chlorine atoms, which is not the CH/pi interaction, is the cause of the very large interaction energy of the CHCl(3) complex. Activated CH/pi interaction (acetylene and substituted methanes with two or three electron-withdrawing groups) is not very weak. The nature of the activated CH/pi interaction may be similar to the hydrogen bond. On the other hand, the nature of other typical (nonactivated) CH/pi interactions is completely different from that of the hydrogen bond. The typical CH/pi interaction is significantly weaker than the hydrogen bond. Dispersion interaction is mainly responsible for the attraction in the CH/pi interaction, whereas electrostatic interaction is the major source of attraction in the hydrogen bond. The orientation dependence of the interaction energy of the typical CH/pi interaction energy is very small, whereas the hydrogen bond has strong directionality. The weak directionality suggests that the hydrogen atom of the interacting C-H bond is not essential for the attraction and that the typical CH/pi interaction does not play critical roles in determining the molecular orientation in molecular assemblies.  相似文献   

15.
The RNA recognition motif (RRM), one of the most common RNA binding domains, contains three highly conserved aromatic amino acids that participate in stacking interactions with RNA bases. We have investigated the contribution of these highly conserved aromatic amino acids to the affinity of the complex formed between the N-terminal RRM of the U1A protein and stem loop 2 of U1 snRNA. Previously, we found that substitution of one of these conserved aromatic amino acids, Phe56, with Ala resulted in a large destabilization of the complex. Here, we have modified A6, the base in stem loop 2 RNA that stacks with Phe56, to compensate for a portion of the destabilization caused by the Phe56Ala mutation. We have designed two modified adenosines, A-3CPh and A-4CPh, in which a phenyl group is linked to the adenosine such that it may replace the phenyl group that is eliminated by the Phe56Ala mutation in the complex. We have found that incorporation of A-3CPh into stem loop 2 RNA stabilizes the complex formed with Phe56Ala by 0.6 kcal/mol, while incorporation of A-4CPh into stem loop 2 RNA stabilizes this complex by 1.8 kcal/mol. Either base modification destabilizes the wild-type complex by 0.8-0.9 kcal/mol. Experiments with other U1A mutant proteins suggest that the stabilization of the complex between the Phe56Ala U1A protein and stem loop 2 RNA is due to a specific interaction between the Phe56Ala U1A protein and A6-4CPh stem loop 2 RNA.  相似文献   

16.
Photoreceptor proteins play crucial roles in receiving light stimuli that give rise to the responses required for biological function. However, structural characterization of conformational transition of the photoreceptors has been elusive in their native aqueous environment, even for a prototype photoreceptor, photoactive yellow protein (PYP). We employ pump-probe X-ray solution scattering to probe the structural changes that occur during the photocycle of PYP in a wide time range from 3.16 μs to 300 ms. By the analysis of both kinetics and structures of the intermediates, the structural progression of the protein in the solution phase is vividly visualized. We identify four structurally distinct intermediates and their associated five time constants and reconstructed the molecular shapes of the four intermediates from time-independent, species-associated difference scattering curves. The reconstructed structures of the intermediates show the large conformational changes such as the protrusion of N-terminus, which is restricted in the crystalline phase due to the crystal contact and thus could not be clearly observed by X-ray crystallography. The protrusion of the N-terminus and the protein volume gradually increase with the progress of the photocycle and becomes maximal in the final intermediate, which is proposed to be the signaling state. The data not only reveal that a common kinetic mechanism is applicable to both the crystalline and the solution phases, but also provide direct evidence for how the sample environment influences structural dynamics and the reaction rates of the PYP photocycle.  相似文献   

17.
Cation-pi interactions between amino acid side chains are increasingly being recognized as important structural and functional features of proteins and other biomolecules. Although these interactions have been found in static protein structures, they have not yet been detected in dynamic biomolecular systems. We determined, by (1)H NMR spectroscopic titrations, the energies of cation-pi interactions of the amino acid derivative AcLysOMe (1) with AcPheOEt (2) and with AcTyrOEt (3) in aqueous and three organic solvents. The interaction energy is substantial; it ranges from -2.1 to -3.4 kcal/mol and depends only slightly on the dielectric constant of the solvent. To assess the effects of auxiliary interactions and structural preorganization on formation of cation-pi interactions, we studied these interactions in the association of pentapeptides. Upon binding of the positively-charged peptide AcLysLysLysLysLysNH(2) (5) to the negatively-charged partner AcAspAspXAspAspNH(2) (6), in which X is Leu (6a), Tyr (6b), and Phe (6c), multiple interactions occur. Association of the two pentapeptides is dynamic. Free peptides and their complex are in fast exchange on the NMR time-scale, and 2D (1)H ROESY spectra of the complex of the two pentapeptides do not show intermolecular ROESY peaks. Perturbations of the chemical shifts indicated that the aromatic groups in peptides 6b and 6c were affected by the association with 5. The association constants K(A) for 5 with 6a and with 6b are nearly equal, (4.0 +/- 0.7) x 10(3) and (5.0 +/- 1.0) x 10(3) M(-)(1), respectively, while K(A) for 5 with 6c is larger, (8.3 +/- 1.3) x 10(3) M(-)(1). Molecular-dynamics (MD) simulations of the pentapeptide pairs confirmed that their association is dynamic and showed that cation-pi contacts between the two peptides are stereochemically possible. A transient complex between 5 and 6 with a prominent cation-pi interaction, obtained from MD simulations, was used as a template to design cyclic peptides C(X) featuring persistent cation-pi interactions. The cyclic peptide C(X) had a sequence in which X is Tyr, Phe, and Leu. The first two peptides do, but the third does not, contain the aromatic residue capable of interacting with a cationic Lys residue. This covalent construct offered conformational stability over the noncovalent complexes and allowed thorough studies by 2D NMR spectroscopy. Multiple conformations of the cyclic peptides C(Tyr) and C(Phe) are in slow exchange on the NMR time-scale. In one of these conformations, cation-pi interaction between Lys3 and Tyr9/Phe9 is clearly evident. Multiple NOEs between the side chains of residues 3 and 9 are observed; chemical-shift changes are consistent with the placement of the side chain of Lys3 over the aromatic ring. In contrast, the cyclic peptide C(Leu) showed no evidence for close approach of the side chains of Lys3 and Leu9. The cation-pi interaction persists in both DMSO and aqueous solvents. When the disulfide bond in the cyclic peptide C(Phe) was removed, the cation-pi interaction in the acyclic peptide AC(Phe) remained. To test the reliability of the pK(a) criterion for the existence of cation-pi interactions, we determined residue-specific pK(a) values of all four Lys side chains in all three cyclic peptides C(X). While NOE cross-peaks and perturbations of the chemical shifts clearly show the existence of the cation-pi interaction, pK(a) values of Lys3 in C(Tyr) and in C(Phe) differ only marginally from those values of other lysines in these dynamic peptides. Our experimental results with dynamic peptide systems highlight the role of cation-pi interactions in both intermolecular recognition at the protein-protein interface and intramolecular processes such as protein folding.  相似文献   

18.
The CH/pi interaction between the indole ring of indolactam-V (IL-V) and the hydrogen atom at position 4 of Pro-11 of the PKCdelta C1B domain was evaluated using the mutant peptide of the PKCdelta C1B domain, in which the CH/pi interaction was inhibited by substitution of the hydrogen atom with a fluorine atom. IL-V showed about a 10 times lower binding affinity to the mutant peptide compared to the wild-type peptide, suggesting that the CH/pi interaction could play a pivotal role in the binding of IL-V to the PKCdelta C1B domain. On the other hand, benzolactam-V8 (BL-V8), with the benzene ring instead of the indole ring of IL-V, might lack the CH/pi interaction. The low binding affinity of BL-V8 could be enhanced by the effective formation of the CH/pi interaction as exemplified by the synthesis of naphtholactam-V8 (NL-V8).  相似文献   

19.
Ab initio (RI-MP2/TZVPP) computations were employed to investigate the interaction between hydrogen-bond donors H2O and CH3OH and covalently bound fluorine in organofluorine compounds. While the CFHO interaction energy is around 3 kcal mol(-1) for unstrained systems, the linear correlation between pyramidalization angle at the carbon atom and the interaction energy suggests that increased binding can be obtained in strained systems. This is confirmed for the dihydrodifluoropyrene-methanol pair, but a large portion of the binding energy is due to the interaction of the pi system with the oxygen atom. Density functional periodic boundary condition computations (PBC-PBE/6-31G*) of the structures of (5,5) and (10,10) armchair (C2F)n fluorinated SWNTs (F-SWNTs) indicate that the pyramidalization at the fluorine-binding carbon atoms are too similar to that of CH3F to enhance the hydrogen-bond acceptor properties of fluorine significantly. The solubility of F-SWNTs in alcohols therefore could be due to a combination of hydrogen bonds and van der Waals interactions with the pi systems.  相似文献   

20.
The photoactive yellow protein (PYP) is the photoreceptor protein responsible for initiating the blue-light repellent response of the Halorhodospira halophila bacterium. Optical excitation of the intrinsic chromophore in PYP, p-coumaric acid, leads to the initiation of a photocycle that comprises several distinct intermediates. The dynamical processes responsible for the initiation of the PYP photocycle have been explored with several time-resolved techniques, which include ultrafast electronic and vibrational spectroscopies. Ultrafast electronic spectroscopies, such as pump-visible probe, pump-dump-visible probe, and fluorescence upconversion, are useful in identifying the timescales and connectivity of the transient intermediates, while ultrafast vibrational spectroscopies link these intermediates to dynamic structures. Herein, we present the use of these techniques for exploring the initial dynamics of PYP, and show how these techniques provide the basis for understanding the complex relationship between protein and chromophore, which ultimately results in biological function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号