首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The local dynamics of a two-trophic chain in the presence of both overcrowding and undercrowding effects on prey growth is investigated. The starting point is given by a general predator–prey system, in which the prey growth rate and the trophic interaction function are defined only by some properties determining their shapes; in particular, the prey growth function is assumed to model a strong Allee effect. A stability analysis of the system using the predation efficiency as bifurcation parameter is performed; conditions for the existence and stability of extinction and coexistence equilibrium states are determined, and peculiar features of the dynamics exhibited by the system are presented, with particular attention to limit cycles and bistability situations. Results are compared with those obtained when overcrowding and undercrowding effects are considered separately.  相似文献   

2.
In almost every ecological system, growth of various interacting species evolve in different time scales and the implementation of this time scale difference in the corresponding mathematical model exhibits some rich and complex oscillatory dynamics. In this article, we consider a predator–prey model with Beddington–DeAngelis functional response in which the prey reproduction is affected by the predation induced fear and its carry-over effect. Considering the growth of prey species occurs on a faster time scale than that of predator, the proposed system reduces to a ‘slow–fast predator–prey’ system. Using the geometric singular perturbation theory and asymptotic expansion technique, we investigate the system both analytically and numerically, and observe a wide range of rich and complex dynamics such as canard cycles (with or without head) near the singular Hopf-bifurcation threshold and relaxation oscillation cycles. The system experiences a canard explosion through which a rapid transition from small amplitude limit cycle to large amplitude limit cycle occurs in a tiny parametric interval. These types of complex oscillatory dynamics are absent in non slow–fast systems. Furthermore, it is shown that the interplay between fear and its carry-over effect, and the variation of time scale parameter may lead to a regime shift of the oscillatory dynamics. We also study the impact of fear and its carry-over effect on the properties of long transient dynamics. Thus our study provides some valuable biological insights of a slow–fast predator–prey system which will aid in understanding the interplay between fear and its carry-over effect.  相似文献   

3.
In this paper, we investigate the impact of strong Allee effect on the stability of a discrete-time predator–prey model with a non-monotonic functional response. The dynamics of discrete-time predator–prey models with strong Allee effect is studied earlier. But, the mathematical investigations of predator–prey dynamics in discrete-time set up with Holling type-IV functional response and strong Allee effect in prey are lacking. The proposed model supports the coexistence of two steady states, and the mathematical features of the model are analyzed based on local stability and bifurcation theory. By considering the Allee parameter as the bifurcation parameter, we provide sufficient conditions for the flip and the Neimark–Sacker bifurcations. We observe that Allee parameter plays a significant role in the dynamics of the system.  相似文献   

4.
The complex dynamics of a two-trophic chain are investigated. The chain is described by a general predator–prey system, in which the prey growth rate and the trophic interaction functions are defined only by some properties determining their shapes. To account for undercrowding phenomena, the prey growth function is assumed to model a strong Allee effect; to simulate the predator interference during the predation process, the trophic function is assumed predator-dependent. A stability analysis of the system is performed, using the predation efficiency and a measure of the predator interference as bifurcation parameters. The admissible scenarios are much richer than in the case of prey-dependent trophic functions, investigated in Buffoni et al. (2011). General conditions for the number of equilibria, for the existence and stability of extinction and coexistence equilibrium states are determined, and the bifurcations exhibited by the system are investigated. Numerical results illustrate the qualitative behaviours of the system, in particular the presence of limit cycles, of global bifurcations and of bistability situations.  相似文献   

5.
We consider the dynamics of a general stage-structured predator–prey model which generalizes several known predator–prey, SEIR, and virus dynamics models, assuming that the intrinsic growth rate of the prey, the predation rate, and the removal functions are given in an unspecified form. Using the Lyapunov method, we derive sufficient conditions for the local stability of the equilibria together with estimations of their respective domains of attraction, while observing that in several particular but important situations these conditions yield global stability results. The biological significance of these conditions is discussed and the existence of the positive steady state is also investigated.  相似文献   

6.
Since intraguild predation (IGP) is a ubiquitous and important community module in nature and Allee effect has strong impact on population dynamics, in this paper we propose a three-species IGP food web model consisted of the IG predator, IG prey and basal prey, in which the basal prey follows a logistic growth with strong Allee effect. We investigate the local and global dynamics of the model with emphasis on the impact of strong Allee effect. First, positivity and boundedness of solutions are studied. Then existence and stability of the boundary and interior equilibria are presented and the Hopf bifurcation curve at an interior equilibrium is given. The existence of a Hopf bifurcation curve indicates that if competition between the IG prey and IG predator for the basal resource lies below the curve then the interior equilibrium remains stable, while if it lies above the curve then the interior equilibrium loses its stability. In order to explore the impact of Allee effect, the parameter space is classified into sixteen different regions and, in each region, the number of interior equilibria is determined and the corresponding bifurcation diagrams on the Allee threshold are given. The extinction parameter regions of at least one species and the necessary coexistence parameter regions of all three species are provided. In addition, we explore possible dynamical patterns, i.e., the existence of multiple attractors. By theoretical analysis and numerical simulations, we show that the model can have one (i.e. extinction of all species), two (i.e. bi-stability) or three (i.e. tri-stability) attractors. It is also found by simulations that when there exists a unique stable interior equilibrium, the model may generate multiple attracting periodic orbits and the coexistence of all three species is enhanced as the competition between the IG prey and IG predator for the basal resource is close to the Hopf bifurcation curve from below. Our results indicate that the intraguild predation food web model exhibits rich and complex dynamic behaviors and strong Allee effect in the basal prey increases the extinction risk of not only the basal prey but also the IG prey or/and IG predator.  相似文献   

7.
In this paper, we propose a bioeconomic differential algebraic predator–prey model with Holling type II functional response and nonlinear prey harvesting. As the nonlinear prey harvesting is introduced, the proposed model displays a complex dynamics in the predator–prey plane. Taking into account of the economic factor, our predator–prey system is established by bioeconomic differential algebraic equations. The effect of economic profit on the proposed model is analyzed by viewing it as a bifurcation parameter. By jointly using the normal form of differential algebraic models and the bifurcation theory, the stability and bifurcations (singularity induced bifurcation, Hopf bifurcation) are discussed. These results obtained here reveal richer dynamics of the bioeconomic differential algebraic predator–prey model with nonlinear prey harvesting, and suggest a guidance for harvesting in the practical word. Finally, numerical simulations are given to demonstrate the results.  相似文献   

8.
This work is concerned with the dynamics of a Leslie–Gower predator–prey model with nonmonotonic functional response near the Bogdanov–Takens bifurcation point. By analyzing the characteristic equation associated with the nonhyperbolic equilibrium, the critical value of the delay inducing the Bogdanov–Takens bifurcation is obtained. In this case, the dynamics near this nonhyperbolic equilibrium can be reduced to the study of the dynamics of the corresponding normal form restricted to the associated two-dimensional center manifold. The bifurcation diagram near the Bogdanov–Takens bifurcation point is drawn according to the obtained normal form. We show that the change of delay can result in heteroclinic orbit, homoclinic orbit and unstable limit cycle.  相似文献   

9.
Assuming that the prey refuge is proportional to the prey density if its population size is below a critical threshold, or constant if its size is above the threshold, this paper proposes, and qualitatively analyzes, a Leslie–Gower predator–prey model assuming alternative feeding and harvesting in predators, and a Holling II function as the predator functional response. From the results of the mathematical analysis to the predator–prey models with proportional or constant prey refuge, the proposed model retains the same bifurcation cases obtained for each model analyzed. However, appropriate alterations of the parameters representing the critical threshold of prey population size and harvest in predators allows the formation of at least one limit cycle, stable or unstable, that lives in both vector fields of the proposed model.  相似文献   

10.
A multiparameter predator–prey system generalizing the model introduced in [6] is considered. The system studied in this paper corresponds to the type of models with exponential fading memory where the logistic per capita rate growth of the prey is given by an arbitrary function of class Ck, k ≥ 3. We prove that the model has a Hopf bifurcation and that there exist open sets in the parameter space such that the system exhibits singular attractors and asymptotically stable limit cycles. A numerical simulation is conducted in order to show the existence of critical attractor elements.As pointed out by Ayala et al. in [14], the Lotka–Volterra model of interspecific competition, which is based on the logistic theory of population growth and assumes that the intra and interspecific competitive interactions between species are linear, does not explain satisfactorily the population dynamics of some species. This is due to fact that the model does not take into account some important features of the population, which affect its dynamics. The model introduced in this paper provides independent conditions of these facts, for the existence of a Hopf bifurcation and the asymptotically stable limit cycles.  相似文献   

11.
The control and management of chaotic population is one of the main objectives for constructing mathematical model in ecology today. In this paper, we apply a technique of controlling chaotic predator–prey population dynamics by supplying additional food to top-predator. We formulate a three species predator–prey model supplying additional food to top-predator. Existence conditions and local stability criteria of equilibrium points are determined analytically. Persistence conditions for the system are derived. Global stability conditions of interior equilibrium point is calculated. Theoretical results are verified through numerical simulations. Phase diagram is presented for various quality and quantity of additional food. One parameter bifurcation analysis is done with respect to quality and quantity of additional food separately keeping one of them fixed. Using MATCONT package, we derive the bifurcation scenarios when both the parameters quality and quantity of additional food vary together. We predict the existence of Hopf point (H), limit point (LP) and branch point (BP) in the model for suitable supply of additional food. We have computed the regions of different dynamical behaviour in the quantity–quality parametric plane. From our study we conclude that chaotic population dynamics of predator prey system can be controlled to obtain regular population dynamics only by supplying additional food to top predator. This study is aimed to introduce a new non-chemical chaos control mechanism in a predator–prey system with the applications in fishery management and biological conservation of prey predator species.  相似文献   

12.
A three dimensional ecoepidemiological model consisting of susceptible prey, infected prey and predator is proposed and analysed in the present work. The parameter delay is introduced in the model system for considering the time taken by a susceptible prey to become infected. Mathematically we analyze the dynamics of the system such as, boundedness of the solutions, existence of non-negative equilibria, local and global stability of interior equilibrium point. Next we choose delay as a bifurcation parameter to examine the existence of the Hopf bifurcation of the system around its interior equilibrium. Moreover we use the normal form method and center manifold theorem to investigate the direction of the Hopf bifurcation and stability of the bifurcating limit cycle. Some numerical simulations are carried out to support the analytical results.  相似文献   

13.
The Bogdanov‐Takens bifurcations of a Leslie‐Gower predator‐prey model with Michaelis‐Menten–type prey harvesting were studied. In the paper “Diff. Equ. Dyn. Syst. 20(2012), 339‐366,” Gupta et al proved that the Leslie‐Gower predator‐prey model with Michaelis‐Menten–type prey harvesting has rich dynamics. Some equilibria of codimension 1 and their bifurcations were discussed. In this paper, we find that the model has an equilibrium of codimensions 2 and 3. We also prove analytically that the model undergoes Bogdanov‐Takens bifurcations (cusp cases) of codimensions 2 and 3. Hence, the model can have 2 limit cycles, coexistence of a stable homoclinic loop and an unstable limit cycle, supercritical and subcritical Hopf bifurcations, and homoclinic bifurcation of codimension 1 as the values of parameters vary. Moreover, several numerical simulations are conducted to illustrate the validity of our results.  相似文献   

14.
In this investigation, we offer and examine a predator–prey interacting model with prey refuge in proportion to both the species and Beddington–DeAngelis functional response. We first prove the well-posedness of the temporal and spatiotemporal models which are restricted in a positive invariant region. Then for the temporal model, we analyse its temporal dynamics including uniform boundedness, permanence, stability of all feasible non-negative equilibria and show that refugia can induce periodic oscillation via Hopf bifurcation around the unique positive equilibrium; for the spatiotemporal model, we not only investigate its permanence, stability of non-negative constant steady states and Turing instability but also study the existence and non-existence of non-constant positive steady states by Leray–Schauder degree theory. The key observation is that the coefficient of refuge cooperates a significant part in modifying the dynamics of the current system and mediates the population permanence, stability of coexisting equilibrium and even the Turing instability parameter space. Finally, general numerical simulation consequences are given to illustrate the validity of the theoretical results. Through numerical simulations, one observes that the model dynamics shows prey refugia and self-diffusion control spatiotemporal pattern growth to spots, stripe–spot mixtures and stripes reproduction. The outcomes assign that the dynamics of the model with prey refuge is not simple, but rich and complex. Additionally, numerical simulations show that the other model parameters have an important effect on species’ spatially inhomogeneous distribution, which results in the formation of spots pattern, mixture of spots and stripes pattern, mixture of spots, stripes and rings pattern and anti-spot pattern. This may improve the model dynamics of the prey refuge on the reaction–diffusion predator–prey system.  相似文献   

15.
Functional response of the Holling type II is incorporated into a predator–prey model with predators using hawk‐dove tactics to consider combination effects of nonlinear functional response and individual tactics. By mathematical analysis, it is shown that the model undergoes a sequence of bifurcations including saddle‐node bifurcation, supercritical Hopf bifurcation and homoclinic bifurcation. New phenomena are found that include the bistable coexistence of prey and predators in the form of a stable limit cycle and a stable positive equilibrium, the bistable coexistence of prey and predators in a large stable limit cycle that encloses three positive equilibria and a stable positive equilibrium within the cycle, and the bistable coexistence of two stable limit cycles.  相似文献   

16.
The paper is concerned with a diffusive prey–predator model subject to the homogeneous Neumann boundary condition, which models the trophic intersections of three levels. We will prove that under certain assumptions, even though the unique positive constant steady state is globally asymptotically stable for the dynamics with diffusion, the non-constant positive steady state can exist due to the emergence of cross-diffusion. We demonstrate that the cross-diffusion can create stationary pattern. Moreover, we treat the cross-diffusion parameter as a bifurcation parameter and discuss the existence of non-constant positive solutions to the system with cross-diffusion.  相似文献   

17.
Elevated salinity, accelerated eutrophication, blooms of Avian botulism and dramatic water quality fluctuation are supposed to be the key factors for massive die-off of Tilapia (prey) and Pelican (predator) in the Salton sea. We modify the model of Chattopadhyay and Bairagi [Ecological Modelling 136 (2001), pp. 103-112] with an assumption that the growth rate of susceptible fish population is very high and study the dynamics of the system by introducing a delay factor in the predator response function. It is observed that the otherwise stable system exhibit a stable limit cycle solution when the lag factor attains its critical value. It is also observed that there is a high possibility of an epidemic out break in the fish as well as in the Pelican population if the predation process is delayed by a considerable amount of time. Numerical simulations for a hypothetical set of parameter values are presented to illustrate the analytical findings.  相似文献   

18.

The objective is the study of the dynamics of a prey–predator model where the prey species can migrate between two patches. The specialist predator is confined to the first patch, where it consumes the prey following the simple law of mass action. The prey is further “endangered” in that it suffers from the strong Allee effect, assumed to occur due to the lowering of successful matings. In the second patch the prey grows logistically. The model is formulated in a comprehensive way so as to include specialist as well as generalist predators, as a continuum of possible behaviors. This model described by a set of three ordinary differential equation is an extension of some previous models proposed and analysed in the literature on metapopulation models. The following analysis issues will be addressed: boundedness of the solution, equilibrium feasibility and stability, and dynamic behaviour dependency of the population and environmental parameters. Three types for both equilibria and limit cycles are possible: trivial, predator-free and coexistence. Classical analysis techniques are used and also theoretical and numerical bifurcation analysis. Besides the well-known local bifurcations, also a homoclinic connection as a global bifurcation is calculated. In view of the difficulty in the analysis, only the specialist case will be analysed. The obtained results indicate that the safe harbor can protect the endangered species under certain parametric restrictions.

  相似文献   

19.
A predator–prey model was extended to include nonlinear harvesting of the predator guided by its population, such that harvesting is only implemented if the predator population exceeds an economic threshold. The proposed model is a nonsmooth dynamic system with switches between the original predator-prey model (free subsystem) and a model with nonlinear harvesting (harvesting subsystem). We initially examine the dynamics of both the free and the harvesting subsystems, and then we investigate the dynamics of the switching system using theories of nonsmooth systems. Theoretical results showed that the harvesting subsystem undergoes multiple bifurcations, including saddle-node, supercritical Hopf, Bogdanov–Takens and homoclinic bifurcations. The switching system not only retains all of the complex dynamics of the harvesting system but also exhibits much richer dynamics such as a sliding equilibrium, sliding cycle, boundary node (saddle point) bifurcation, boundary saddle-node bifurcation and buckling bifurcation. Both theoretical and numerical results showed that, by implementing predator population guided harvesting, the predator and prey population could coexist in more scenarios than those in which the predator may go extinct for the continuous harvesting regime. They could either stabilize at an equilibrium or oscillate periodically depending on the value of the economic threshold and the initial value of the system.  相似文献   

20.
In this work, a bidimensional continuous-time differential equations system is analyzed which is derived from Leslie type predator–prey schemes by considering a nonmonotonic functional response and Allee effect on population prey. For ecological reason, we describe the bifurcation diagram of limit cycles that appear only at the first quadrant in the system obtained. We also show that under certain conditions over the parameters, the system allows the existence of a stable limit cycle surrounding an unstable limit cycle generated by Hopf bifurcation. Furthermore, we give conditions over the parameters such that the model allows long-term extinction or survival of both populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号