首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper considers a class of stochastic linear complementarity problems (SLCPs) with finitely many realizations. We first formulate this class of SLCPs as a minimization problem. Then, a partial projected Newton method, which yields a stationary point of the minimization problem, is presented. The global and quadratic convergence of the proposed method is proved under certain assumptions. Preliminary experiments show that the algorithm is efficient and the formulation may yield a solution with various desirable properties.  相似文献   

2.
In this paper, we introduce a new class of smoothing functions, which include some popular smoothing complementarity functions. We show that the new smoothing functions possess a system of favorite properties. The existence and continuity of a smooth path for solving the nonlinear complementarity problem (NCP) with a P 0 function are discussed. The Jacobian consistency of this class of smoothing functions is analyzed. Based on the new smoothing functions, we investigate a smoothing Newton algorithm for the NCP and discuss its global and local superlinear convergence. Some preliminary numerical results are reported.  相似文献   

3.
In this paper, it is considered for a class of stochastic linear complementarity problems (SLCPs) with finitely many elements. A smoothing Levenberg-Marquardt algorithm is proposed for solving the SLCP. Under suitable conditions, the global convergence and local quadratic convergence of the proposed algorithm is given. Some numerical results are reported in this paper, which confirms the good theoretical properties of the proposed algorithm.  相似文献   

4.
A class of stochastic linear complementarity problems (SLCPs) with finitely many realizations is considered. We first formulate the problem as a new constrained minimization problem. Then, we propose a feasible semismooth Newton method which yields a stationary point of the constrained minimization problem. We study the condition for the level set of the objective function to be bounded. As a result, the condition for the solution set of the constrained minimization problem is obtained. The global and quadratic convergence of the proposed method is proved under certain assumptions. Preliminary numerical results show that this method yields a reasonable solution with high safety and within a small number of iterations.  相似文献   

5.
6.
A smoothing inexact Newton method for nonlinear complementarity problems   总被引:1,自引:0,他引:1  
In this article, we propose a new smoothing inexact Newton algorithm for solving nonlinear complementarity problems (NCP) base on the smoothed Fischer-Burmeister function. In each iteration, the corresponding linear system is solved only approximately. The global convergence and local superlinear convergence are established without strict complementarity assumption at the NCP solution. Preliminary numerical results indicate that the method is effective for large-scale NCP.  相似文献   

7.
In this paper, a new smoothing function is given by smoothing the symmetric perturbed Fischer-Burmeister function. Based on this function, a smoothing Newton algorithm is proposed for solving the monotone second-order cone complementarity problems. The global and local quadratic convergence results of the algorithm are established under suitable assumptions. The theory of Euclidean Jordan algebras is a basic tool which is extensively used in our analysis. Numerical results indicate that the proposed algorithm is effective.  相似文献   

8.
In this paper, we present a predictor-corrector smoothing Newton method for solving nonlinear symmetric cone complementarity problems (SCCP) based on the symmetrically perturbed smoothing function. Under a mild assumption, the solution set of the problem concerned is just nonempty, we show that the proposed algorithm is globally and locally quadratic convergent. Also, the algorithm finds a maximally complementary solution to the SCCP. Numerical results for second order cone complementarity problems (SOCCP), a special case of SCCP, show that the proposed algorithm is effective.  相似文献   

9.
We present a modified damped Newton method for solving large sparse linear complementarity problems, which adopts a new strategy for determining the stepsize at each Newton iteration. The global convergence of the new method is proved when the system matrix is a nondegenerate matrix. We then apply the matrix splitting technique to this new method, deriving an inexact splitting method for the linear complementarity problems. The global convergence of the resulting inexact splitting method is proved, too. Numerical results show that the new methods are feasible and effective for solving the large sparse linear complementarity problems.  相似文献   

10.
In this paper, we present a new smoothing Newton method for solving monotone weighted linear complementarity problem (WCP). Our algorithm needs only to solve one linear system of equation and performs one line search per iteration. Any accumulation point of the iteration sequence generated by our algorithm is a solution of WCP. Under suitable conditions, our algorithm has local quadratic convergence rate. Numerical experiments show the feasibility and efficiency of the algorithm.  相似文献   

11.
The mixed complementarity problem (denote by MCP(F)) can be reformulated as the solution of a smooth system of equations. In the paper, based on a perturbed mid function, we propose a new smoothing function, which has an important property, not satisfied by many other smoothing function. The existence and continuity of a smooth path for solving the mixed complementarity problem with a P0 function are discussed. Then we presented a one-step smoothing Newton algorithm to solve the MCP with a P0 function. The global convergence of the proposed algorithm is verified under mild conditions. And by using the smooth and semismooth technique, the rate of convergence of the method is proved under some suitable assumptions.  相似文献   

12.
In this paper, we propose a modified semismooth Newton method for a class of complementarity problems arising from the discretization of free boundary problems and establish its monotone convergence. We show that under appropriate conditions, the method reduces to semismooth Newton method. We also do some preliminary numerical experiments to show the efficiency of the proposed method.  相似文献   

13.
In last decades, there has been much effort on the solution and the analysis of the mixed complementarity problem (MCP) by reformulating MCP as an unconstrained minimization involving an MCP function. In this paper, we propose a new modified one-step smoothing Newton method for solving general (not necessarily P0) mixed complementarity problems based on well-known Chen-Harker-Kanzow-Smale smooth function. Under suitable assumptions, global convergence and locally superlinear convergence of the algorithm are established.  相似文献   

14.
A new multiplier method for solving the linear complementarity problem LCP(q, M) is proposed. By introducing a Lagrangian of LCP(q, M), a new smooth merit function ϑ(x, λ) for LCP(q, M) is constructed. Based on it, a simple damped Newton-type algorithm with multiplier self-adjusting step is presented. When M is a P-matrix, the sequence {ϑ(x k, λ k)} (where {(x k, λ k)} is generated by the algorithm) is globally linearly convergent to zero and convergent in a finite number of iterations if the solution is degenerate. Numerical results suggest that the method is highly efficient and promising. Selected from Numerical Mathematics (A Journal of Chinese Universities), 2004, 26(2): 162–171  相似文献   

15.
There recently has been much interest in smoothing Newton method for solving nonlinear complementarity problems. We extend such method to symmetric cone complementarity problems (SCCP). In this paper, we first investigate a one-parametric class of smoothing functions in the context of symmetric cones, which contains the Fischer–Burmeister smoothing function and the CHKS smoothing function as special cases. Then we propose a smoothing Newton method for the SCCP based on the one-parametric class of smoothing functions. For the proposed method, besides the classical step length, we provide a new step length and the global convergence is obtained. Finally, preliminary numerical results are reported, which show the effectiveness of the two step lengthes in the algorithm and provide efficient domains of the parameter for the complementarity problems.  相似文献   

16.
In this paper we introduce a new smoothing function and show that it is coercive under suitable assumptions. Based on this new function, we propose a smoothing Newton method for solving the second-order cone complementarity problem (SOCCP). The proposed algorithm solves only one linear system of equations and performs only one line search at each iteration. It is shown that any accumulation point of the iteration sequence generated by the proposed algorithm is a solution to the SOCCP. Furthermore, we prove that the generated sequence is bounded if the solution set of the SOCCP is nonempty and bounded. Under the assumption of nonsingularity, we establish the local quadratic convergence of the algorithm without the strict complementarity condition. Numerical results indicate that the proposed algorithm is promising.  相似文献   

17.
提出了求解非对称线性互补问题的并行二级多分裂迭代算法,并证明了该算法的收敛性,最后通过数值实验验证了算法的有效性和可行性.  相似文献   

18.
In this paper, we introduce a one-parametric class of smoothing functions in the context of symmetric cones which contains two symmetric perturbed smoothing functions as special cases, and show that it is coercive under suitable assumptions. Based on this class of smoothing functions, a smoothing Newton algorithm is extended to solve the complementarity problems over symmetric cones, and it is proved that the proposed algorithm is globally and locally superlinearly convergent under suitable assumptions. The theory of Euclidean Jordan algebras is a basic tool which is extensively used in our analysis. Preliminary numerical results for randomly generated second-order cone programs and several practical second-order cone programs from the DIMACS library are reported.  相似文献   

19.
As is well-known, Jacobian smoothing method is a popular one to solve nonlinear complementarity problems, in which the Jacobian consistency is stressed. By investigating an element of related functions’ B-differential, a smoothing Levenberg-Marquardt(LM) method is proposed based on a Chen-Harker-Kanzow-Smale(CHKS) smoothing function, which satisfies a property called strongly Jacobian consistency. Finally, the numerical experiments illustrate the effectiveness of the given method.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号