首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In sesame seeds, high concentrations of lignans are present. When these lignans are fermented in the human colon, a range of structurally different lignans is formed. A good liquid chromatography/mass spectrometry (LC/MS) protocol for the analysis of lignans in complex mixtures is lacking. In order to develop such a protocol, electrospray ionization (ESI)-MS and atmospheric pressure chemical ionization (APCI)-MS, both in the positive and negative ionization mode, were compared. An extract from defatted sesame meal was analyzed by APCI-MS and ESI-MS, before and after deglucosylation. APCI-MS was found to be a more generic method than ESI-MS because lignans, especially sesamolin, sesamin and pinoresinol, were better detected by APCI-MS than by ESI-MS. Positive and negative ionization modes had to be combined in order to detect all lignans in a bacterial culture grown on aglyconic, acid-treated lignans from sesame oil and defatted sesame meal. Lignans with methylenedioxy-bridged furanofuran structures mostly lack phenolic hydroxyl groups and were, therefore, optimally detected in positive ionization mode. Dibenzylbutadiene lignans, which were formed during fermentation, carry hydroxyl groups and were better detected in negative ionization mode.  相似文献   

2.
Mass spectra of urea nitrate were measured in electrospray ionization and in atmospheric pressure chemical ionization in the negative mode. In both ionization methods two characteristic adduct ions containing the intact molecule [urea nitrate+NO3]- and [urea nitrate+HNO3+NO3]- are shown. The structure of the two adduct ions was deduced using measurements of isotopically labeled urea nitrate. Collision-induced dissociation measurements of the adduct ions show typical losses enabling the identification of urea nitrate in trace amounts. Using these methods urea nitrate was identified in real cases.  相似文献   

3.
The only relevant source for human exposure to dinitropyrenes is diesel engine emissions. Due to this specificity, dinitropyrenes may be used as biomarkers for monitoring human exposure to diesel engine emissions. Only few analytical methods have been described for the quantitation of dinitropyrenes and their metabolites, aminonitropyrenes, and diaminopyrenes. Therefore, for dinitropyrenes, aminonitropyrenes, and diaminopyrenes were selected as model compounds for the development of a sensitive HPLC-MS/MS method (high performance liquid chromatography coupled to triple quadrupole mass spectrometry) was to quantify polyaromatic amines and nitroarenes in biological matrices was developed optimal methods by comparing electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and atmospheric pressure photoionization (APPI) sources. Dinitropyrene was not effectively ionized and diaminopyrene yielded mainly [M(.)](+) ions by electrospray ionization. With APCI and APPI, precursor ions of diaminopyrene and aminonitropyrene were [M + H](+) and [M(.)](-) for dinitropyrene. Precursor ions with [M - 30(.)](-) for dinitropyrene and [M - 30 + H](+) for aminonitropyrene were observed. Reversed and normal phase HPLC-MS/MS with ESI, APCI and APPI were optimized separately with respect to unequivocal analyte identification and sensitivity. Normal phase HPLC coupled to APPI-MS/MS gave the highest precision and sensitivity for aminonitropyrene (6%/0.2 pg on column) and dinitropyrene (9%/0.5 pg on column). The limit of detection in spiked rat plasma was 5 pg/100 microL for aminonitropyrene (accuracy 82%) and 10 pg/100 microL for dinitropyrene (accuracy 105%). In plasma of rats treated with dinitropyrene by oral administration, no detectable levels of dinitropyrene but higher aminonitropyrene levels compared with intratracheal instillation were observed. These findings clearly demonstrate that dinitropyrene was absorbed after oral and intratracheal application and that a reduction of nitro groups occurs to a high extent in the reductive environment of the intestine. To our knowledge, this is the first time that aminonitropyrene was observed in plasma after intratracheal or oral administration directly demonstrating the reductive metabolism of dinitropyrene in vivo.  相似文献   

4.
Organic peroxides such as the cumene hydroperoxide I (M(r) = 152 u), the di-tert-butyl peroxide II (M(r) = 146 u) and the tert-butyl peroxybenzoate III (M(r) = 194 u) were analyzed by atmospheric pressure chemical ionization mass spectrometry using a water-methanol mixture as solvent with a low flow-rate of mobile phase and unusual conditions of the source temperature (< or =50 degrees C) and probe temperature (70-200 degrees C). The mass spectra of these compounds show the formation of (i) an [M + H](+) ion (m/z 153) for the hydroperoxide I, (ii) a stable adduct [M + CH(3)OH(2)](+) ion (m/z 179) for the dialkyl peroxide II and (iii) several protonated adduct species such as protonated molecules (m/z 195) and different protonated adduct ions (m/z 227, 389 and 421) for the peroxyester III. Tandem mass spectrometric experiments, exact mass measurements and theoretical calculations were performed for characterize these gas-phase ionic species. Using the double-well energy potential model illustrating a gas-phase bimolecular reaction, three important factors are taken into account to propose a qualitative interpretation of peroxide behavior toward the CH(3)OH(2) (+), i.e. thermochemical parameters (DeltaHdegrees(reaction)) and two kinetic factors such as the capture constant of the initial stable ion-dipole and the magnitude of the rate constant of proton transfer reaction into the loose proton bond cluster.  相似文献   

5.
This study compared the sensitivities and matrix effects of four ionization modes and four reversed-phase liquid chromatographic (LC) systems on analyzing estrone (E1), 17β-estradiol (E2), estriol (E3), 17α-ethinylestradiol (EE2), 4-nonylphenol (NP), 4-tert-octylphenol (OP), bisphenol A (BPA) and their derivatives of dansyl chloride or pentafluorobenzyl bromide (PFBBr) in water matrixes using a triple-quadrupole mass spectrometer with selected reaction monitoring (SRM). The four probes were electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI) and APCI/APPI; the four LC systems were ultra-performance liquid chromatography (UPLC) with or without post-column split, a mixed-mode column and two-dimensional LC (2D-LC). Dansylated compounds with ESI at UPLC condition had the most intense signals and less matrix effects of the various combinations of ionization and LC systems. The on-column limits of detection (LODs) of dansylated estrogens by SRM were 0.05–0.20 pg, and the LODs in sewage treatment plant effluent and in river water were 0.23–0.52 and 0.56–0.91 ng/L, respectively. The LODs using selected ion monitoring (SIM) reached low ng/L levels in real samples and measured concentrations were comparable with those of SRM.  相似文献   

6.
The applicability of liquid chromatography/tandem mass spectrometry (LC/MS/MS) for the detection of the free anabolic steroid fraction in human urine was examined. Electrospray ionization (ESI), atmospheric pressure chemical ionization and atmospheric pressure photoionization methods were optimized regarding eluent composition, ion source parameters and fragmentation. The methods were compared with respect to specificity and detection limit. Although all methods proved suitable, LC/ESI-MS/MS with a methanol-water gradient including 5 mM ammonium acetate and 0.01% acetic acid was found best for the purpose. Multiple reaction monitoring allowed the determination of steroids in urine at low nanogram per milliliter levels. LC/MS/MS exhibited high sensitivity and specificity for the detection of free steroids and may be a suitable technique for screening for the abuse of anabolic steroids in sports.  相似文献   

7.
The fragmentation behavior of taxoids was studied using electrospray (ESI) and atmospheric pressure chemical ionization (APCI) sources with multi-stage tandem mass spectrometry. In the positive ion mode taxoids gave prominent [M+Na]+ and [M+K]+ ions with the ESI source, and [M+NH4]+ or [M+H]+ ions with the APCI source. The MS/MS fragmentations of ions produced by APCI and ESI sources were very similar. For both sources, the presence of cinnamoyl or benzoyl groups could be characterized by initial losses of 148 or 122 u, respectively, from molecular adduct ions. However, the elimination of cinnamic acid was relatively difficult for the molecular adduct ions formed by APCI, and was comparable in importance to the loss of acetic acid. The other fragments involved losses of CH2CO, CO, and H2O. The 5/7/6 type taxoids underwent characteristic losses of 58 or 118 u from ions produced by both APCI and ESI sources. The fragmentation behavior was remarkably influenced by substitution locations. The elimination of the C-10 benzoyl group was usually the first fragmentation step, while that of the C-2 benzoyl group was relatively difficult. The acetoxyl group at C-7 was more active than those at C-2, C-9, and C-10, which in turn were more active than that at C-4. These fragmentation rules could facilitate the rapid screening and structural characterization of taxoids in plant extracts by high-performance liquid chromatography/mass spectrometry (HPLC/MS).  相似文献   

8.
9.
10.
With 15 flavonoids as test compounds, the analytical performance of four modes of LC-MS, multiple MS (MSn) and tandem MS operation (atmospheric pressure chemical ionization (APCI), electrospray ionization, positive and negative ionization) was compared for two mass spectrometers, a triple-quadrupole and an ion-trap instrument. Two organic modifiers, methanol and acetonitrile, and two buffers, ammonium acetate and ammonium formate, were used. In general, the use of APCI in the negative ion mode gave the best response, with the signal intensities and the mass-spectral characteristics not differing significantly between the two instruments. The best results were obtained when methanol-ammonium formate (pH 4.0) was used as LC eluent. Under optimum conditions full-scan limits of detection of 0.1-30 mg/l were achieved in the negative APCI mode. Here it needs to be emphasized that up to 2-order response differences were found both between analytes and between modes of ionization. This implies that one should be very cautious when interpreting data on the screening of real-life samples. The main fragmentations observed in the MSn spectra on the ion-trap, or the tandem MS spectra on the triple-quadrupole were generally the same. The advantage of the former approach is the added possibility to ascertain precursor-->product ion relationships.  相似文献   

11.
Accurate measurement of estradiol (E2) is important in clinical diagnostics and research. High sensitivity methods are critical for specimens with E2 concentrations at low picomolar levels, such as serum of men, postmenopausal women and children. Achieving the required assay performance with LC–MS is challenging due to the non‐polar structure and low proton affinity of E2. Previous studies suggest that ionization has a major role for the performance of E2 measurement, but comparisons of different ionization techniques for the analysis of clinical samples are not available. In this study, female serum and endometrium tissue samples were used to compare electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) in both polarities. APPI was found to have the most potential for E2 analysis, with a quantification limit of 1 fmol on‐column. APCI and ESI could be employed in negative polarity, although being slightly less sensitive than APPI. In the presence of biological background, ESI was found to be highly susceptible to ion suppression, while APCI and APPI were largely unaffected by the sample matrix. Irrespective of the ionization technique, background interferences were observed when using the multiple reaction monitoring transitions commonly employed for E2 (m/z 271 > 159; m/z 255 > 145). These unidentified interferences were most severe in serum samples, varied in intensity between ionization techniques and required efficient chromatographic separation in order to achieve specificity for E2. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
A new ionization method named surface-activated chemical ionization (SACI) has been realized. In this invention a commercially available atmospheric pressure chemical ionization (APCI) chamber, employed without any corona discharge (no-discharge APCI), has been modified with the insertion of a gold surface, leading to a significant improvement in the ionization efficiency. The ionization of the sample takes place by both gas-phase and surface-activated processes. This new ionization source is able to generate ions with high molecular mass and low charge states, leading to improved sensitivity and reduced noise. The new device has been tested in the analysis of some peptides. A comparison between the performance with and without the presence of the surface, and the optimization of the operating conditions (nebulizing gas flow, sample solution flow, pH of solution, and surface area), are reported and discussed.  相似文献   

13.
The capabilities of atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) methods for quantitative analysis of polar and ionic compounds in petroleum fractions have been examined. The requirements of the analysis for sensitivity, linear dynamic range, and structural characterization have been discussed. ESI was found to be approximately two orders of magnitude more sensitive than APCI and is most suitable for the detection of analytes in weak concentrations. Equivalent relative linear dynamic ranges were observed by the two methods (at least three orders of magnitude). For the relatively high analyte concentrations examined here (e.g., 1-100 ppm or higher), the absolute area counts increased linearly with the analyte amount only in APCI, making this method more attractive for quantitative liquid chromatography/mass spectrometry (LC/MS) applications. Nevertheless, a wider range of ionic compounds can be detected by ESI than by APCI.  相似文献   

14.
15.
Liquid chromatography/mass spectrometry (LC/MS) with electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) in the positive and negative ion modes was used for the characterization of a block copolymer consisting of methoxy poly(ethylene oxide) (mPEO), an epsilon-caprolactone (CL) segment and linoleic acid (LA), used as surfactant in water-based latex paints. Chromatographic separation was obtained based on the number of CL units in the polymer species and the presence of an mPEO and/or LA tail. Different ionization methods were found to be complementary and only their combination allowed the qualitative profiling of the chemical composition. The LC/MS method has proven valuable for following the reaction in time, as well as for comparison of different polymeric surfactants.  相似文献   

16.
ESI and APCI ionization techniques in both negative and positive ion modes were evaluated for simultaneous LC-MS analysis of the four tocopherol homologues (alpha, beta, gamma and delta). The ESI and APCI ionization of tocopherols in positive ion mode was not efficient and proceeded via two competitive mechanisms, with the formation of protonated pseudo-molecular ions and molecular ions, which adversely influenced the repeatability of MS signal. Ionization in negative ion mode in both ESI and APCI was more efficient as it only produced target deprotonated pseudo-molecular ions. The APCI in negative ion mode showed larger linearity range, lower detection limits and was less sensitive to the differences in chemical structure of analytes and nature of applied solvents than negative ion ESI. Negative ion APCI was, therefore, chosen for the development of LC-MS method for simultaneous determination of the four tocopherols in foods. A baseline separation of the tocopherols was achieved on novel pentafluorophenyl silica-based column Fluophase PFP. The use of methanol-water (95:5, v/v) as a mobile phase was preferable to the use of acetonitrile-water due to considerable gain in MS signal. The limits of quantifications were 9 ng/mL for alpha-tocopherol, 8 ng/mL for beta- and gamma- and 7.5 ng/mL for delta-tocopherol when 2 microL was injected. This method was successfully applied to determination of tocopherols in sunflower oil and milk.  相似文献   

17.
18.
Sensitive detection of tetrabromobisphenol A (TBBPA) and its derivatives, a group of emerging toxic contaminants, is highly necessitated in environmental investigation. Herein a novel analytical strategy based on reactive extractive electrospray ionization (EESI) tandem mass spectrometry for detection of tetrabromobisphenol A bis(2-hydroxyethyl ether) (TBBPA-BHEE), tetrabromobisphenol A bis(glycidyl ether) (TBBPA-BGE), tetrabromobisphenol A bis(allylether) (TBBPA-BAE), and tetrabromobisphenol S bis(allylether) (TBBPS-BAE) in industrial waste water samples was developed. Active silver cations (Ag+), generated by electrospraying a silver nitrate methanol solution (10 mg L−1), collides the neutral TBBPA derivatives molecules in the EESI source to form [M + Ag]+ complexes of the analytes under the ambient conditions. Upon collision-induced dissociation (CID), characteristic fragments of the [M + Ag]+ complexes were identified for confident and sensitive detection of the four TBBPA derivatives. Under the optimized experimental conditions, the instrumental limits of detection (LODs) of TBBPA-BHEE, TBBPA-BGE, TBBPA-BAE and TBBPS-BAE were 0.37, 0.050, 0.76, and 4.6 μg L−1, respectively. The linear ranges extended to 1000 μg L−1 (R2 ≥ 0.9919), and the relative standard deviations (RSDs), inter-day variation and intra-day variation were less than 7.8% (n = 9), 10.0% (n = 5), and 14.8% (n = 1 per day for 5 days) for all derivatives. TBBPA derivative manufacturing industrial waste water, river water and tap water samples were fast analyzed with the proposed method. The contents of TBBPA derivatives were various in the collected samples, with the highest 19.9 ± 0.3 μg L−1 of TBBPA-BAE in the waste water samples.  相似文献   

19.
A home-made extractive electrospray ionization source is coupled to an linear quadrupole ion trap mass spectrometer to investigate ion/molecule reactions of biopolymers at ambient pressure. Multiply charged biopolymers such as peptides and proteins generated in an electrospray are easily reduced to a low charge state by the atmospheric pressure ion/molecule reactions occurring between the multiply charged ions and a strong basic reagent sprayed in neutral form into the electrospray plume. The charge state of the biopolymer ions can be manipulated by controlling the amount of the basic reagent. The production of biopolymer ions with low charge states results in a substantial improvement of sensitivity and reduced spectral congestion in ESI-MS. This is of importance for biopolymer mixture analysis and could have promising applications in proteomics.  相似文献   

20.
The mass spectrometric (MS) and tandem mass spectrometric (MS/MS) behavior of six nitrocatechol-type glucuronides using atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) was systematically studied, and the effect of operation parameters on the fragmentations are presented. The positive ion APCI- and ESI-MS spectra showed an intense protonated molecule and the respective negative ion spectra a deprotonated molecule with minimal fragmentation. The main fragment ions in the MS/MS spectra of the protonated and deprotonated molecules were [M + H - Glu]+ and [M - H - Glu]-, respectively, formed by the loss of the glucuronide moiety. The measured limits of detection indicated that ESI is a significantly more efficient ionization method than APCI in the negative and positive ion modes for the compounds studied. MS/MS was found to be less sensitive, but more reliable and simple than MS due to the absence of chemical noise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号