首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have determined that a cationic rhodium(I)/Segphos complex catalyzes an enantio- and diastereoselective intermolecular [2+2+2] cycloaddition of 1,2-bis(arylpropiolyl)benzenes with various monoalkynes at room temperature to give axially chiral 1,4-teraryls possessing an anthraquinone structure in good yields with good enantio- and diastereoselectivities. We have also determined that a thermal intramolecular [4+2] cycloaddition of 1,2-bis(arylpropiolyl)benzenes proceeds at 60 degrees C to give aryl-substituted naphthacenediones in moderate to good yields.  相似文献   

2.
The reaction of biradical [P(μ-NTer)]2 ( 1 , Ter = 2,6-bis(2,4,6-trimethylphenyl)phenyl) towards different alkenes (R = 2,3-dimethyl–butadiene, 2,5-dimethyl-2,4-hexadiene, 1,7-octadiene, 1,4-cyclohexadiene) and alkynes (R = 1,4-diphenyl-1,3-butadiyne) was studied experimentally. Although these olefins can react in different ways, only [2+2] cycloaddition products ( 1R ) were observed. The reaction with 2,3-dimethylbutadiene also led to the [2+2] product ( 1dmb ). Thermal treatment of 1dmb above 140 °C resulted in the recovery of biradical 1 upon homolytic bond cleavage of the two P–C bonds and the release of 2,3-dimethylbutadiene. In contrast to this reaction, all other [2+2] additions products ( 1R , R = 1,7-octadiene, 1,4-cyclohexadiene, 1,4-diphenyl-1,3-butadiyne) began to decompose at temperatures between 200 °C and 300 °C. Only unidentified products were obtained but no temperature-controlled equilibrium reactions were observed. Computations were carried out to shed light into the formal [2+2] as well as the possible [4+2] addition reaction.  相似文献   

3.
"Formal" and standard Ru(II)-catalyzed [2 + 2 + 2] cycloaddition of 1,6-diynes 1 to alkenes gave bicyclic 1,3-cyclohexadienes in relatively good yields. The neutral Ru(II) catalyst was formed in situ by mixing equimolecular amounts of [Cp*Ru(CH3CN)3]PF6 and Et4NCl. Two isomeric bicyclic 1,3-cyclohexadienes 3 and 8 were obtained depending on the cyclic or acyclic nature of the alkene partner. Mechanistic studies on the Ru catalytic cycle revealed a clue for this difference: (a) when acyclic alkenes were used, linear coupling of 1,6-diynes with alkenes was observed giving 1,3,5-trienes 6 as the only initial reaction products, which after a thermal disrotatory 6e-pi electrocyclization led to the final 1,3-cyclohexadienes 3 as probed by NMR studies. This cascade process behaved as a formal Ru-catalyzed [2 + 2 + 2] cycloaddition. (b) With cyclic alkenes, the standard Ru-catalyzed [2 + 2 + 2] cycloaddition occurred, giving the bicyclic 1,3-cyclohexadienes 8 as reaction products. A complete catalytic cycle for the formal and standard Ru-catalyzed [2 + 2 + 2] cycloaddition of acetylene and cyclic and acyclic alkenes with the Cp*RuCl fragment has been proposed and discussed based on DFT/B3LYP calculations. The most likely mechanism for these processes would involve the formation of ruthenacycloheptadiene intermediates XXIII or XXVII depending on the alkene nature. From these complexes, two alternatives could be envisioned: (a) a reductive elimination in the case of cyclic alkenes 7 and (b) a beta-elimination followed by reductive elimination to give 1,3,5-hexatrienes 6 in the case of acyclic alkenes. Final 6e-pi electrocyclization of 6 gave 1,3-cyclohexadienes 3.  相似文献   

4.
Sung MJ  Pang JH  Park SB  Cha JK 《Organic letters》2003,5(12):2137-2140
[reaction: see text] In connection with the known diyne-ene [2 + 2 + 2] cycloaddition reactions mediated by titanium aryloxides, the ability of titanium alkoxides to promote coupling of a titanacyclopentadiene with an alkene has been assessed for the isomerization-free preparation of 1,3-cyclohexadienes. The successful cycloaddition by titanium alkoxides is predicated on the use of homoallylic alcohols as the olefin component. With secondary homoallylic alcohols, high 1,3-diastereoselectivity is observed, which lends itself to enantioselective preparation of functionalized 1,3-cyclohexadienes.  相似文献   

5.
"Formal" and standard RuII-catalyzed [2+2+2] cycloaddition of 1,6-diynes to alkenes gave bicyclic 1,3-cyclohexadienes in relatively good yields. When terminal 1,6-diynes 1 were used, two isomeric bicyclic 1,3-cyclohexadienes 4 or 6 were obtained, depending on the acyclic or cyclic nature of the alkene partner. When unsymmetrical substituted 1,6-diynes 7 were used, the reaction with acyclic alkenes took place regio- and stereoselectively to afford bicyclic 1,3-cyclohexadienes 8. A cascade process that behaves as a "formal" RuII-catalyzed [2+2+2] cycloaddition explained these results. Initially, a Ru-catalyzed linear coupling of 1,6-diynes 1 and 7 with acyclic alkenes occurs to give open 1,3,5-trienes of type 3, which after a thermal disrotatory 6e(-) pi-electrocyclization led to the final 1,3-cyclohexadienes 4 and 8. When disubstituted 1,6-diyne 10 was used with electron-deficient alkenes, new exo-methylene cyclohexadienes 12 arose from a competitive reaction pathway.  相似文献   

6.
Four donor-acceptor [2]catenanes with cyclobis(paraquat-p-phenylene) (CBPQT4+) as the pi-electron-accepting cyclophane and 1,5-dioxynaphthalene (DNP)-containing macrocyclic polyethers as pi-electron donor rings have been synthesized under mild conditions, employing Cu+-catalyzed Huisgen 1,3-dipolar cycloaddition and Cu2+-mediated Eglinton coupling in the final steps of their syntheses. Oligoether chains carrying terminal alkynes or azides were used as the key structural features in template-directed cyclizations of [2]pseudorotaxanes to give the [2]catenanes. Both reactions proceed well with precursors of appropriate oligoether chain lengths but fail when there are only three oxygen atoms in the oligoether chains between the DNP units and the reactive functional groups. The solid-state structures of the donor-acceptor [2]catenanes confirm their mechanically interlocked nature, stabilized by [pi...pi], [C-H...pi], and [C-H...Omicron] interactions, and point to secondary noncovalent contacts between 1,3-butadiyne and 1,2,3-triazole subunits and one of the bipyridinum units of the CBPQT4+ ring. These contacts are characterized by the roughly parallel orientation of the inner bipyridinium ring system and the 1,2,3-triazole and 1,3-butadiyne units, as well as by the short [pi...pi] distances of 3.50 and 3.60 A, respectively. Variable-temperature 1H NMR spectroscopy has been used to identify and quantify the barriers to the conformationally and co-conformationally dynamic processes. The former include the rotations of the phenylene and the bipyridinium ring systems around their substituent axes, whereas the latter are confined to the circumrotation of the CBPQT4+ ring around the DNP binding site. The barriers for the three processes were found to be successively 14.4, 14.5-17.5, and 13.1-15.8 kcal mol-1. Within the limitations of the small dataset investigated, emergent trends in the barrier heights can be recognized: the values decrease with the increasing size of the pi-electron-donating macrocycle and tend to be lower in the sterically less encumbered series of [2]catenanes containing the 1,3-butadiyne moiety.  相似文献   

7.
The Fe+-mediated [4+2] cycloaddition of dienes with alkynes has been examined by four-sector ion-beam and ion cyclotron resonance mass spectrometry. Prospects and limitations of this reaction were evaluated by investigating several Me-substituted ligands. Me Substitution at C(2) and C(3) of the diene, i.e., 2-methylbuta-1,3-diene, 2,3-dimethylbuta-1,3-diene, hardly disturbs the cycloaddition. Similarly, variation of the alkyne by use of propyne and but-2-yne does not affect the [4+2] cycloaddition step, but allows for H/D exchange processes prior to cyclization. In contrast, Me substituents in the terminal positions of the diene moiety (e.g., penta-1,3-diene, liexa-2,4-diene) induce side reactions, namely double-bond migration followed by [3+2] and [5+2] cycloadditions, up to almost complete suppression of the [4+2] cycloaddition for 2,4-dimethylhexa-2,4-diene. Similarly, alkynes with larger alkyl substituents (pent-1-yne, 3,3-dimethylbut-1-yne) suppress the [4 + 2] cycloaddition route. Stereochemical effects have been observed for the (E)- and (Z)-penta-1,3-diene ligands as well as for (E,E)- and (E,Z)-hexa-2,4-diene. A mechanistic explanation for the different behavior of the stereoisomers in the cyclization reaction is developed. Further, the regiochemical aspects operative in the systems ethoxyacetylene/pentadiene/Fe+ and ethoxyacetylcne/isoprene/Fe+ indicate that substituents avoid proximity.  相似文献   

8.
We describe the design and application of tailored aminoallyl precursors for catalytic (3+2) cycloaddition with conjugated dienes via a Pd‐aminoallyl intermediate. The new cycloaddition reactions override the conventional (4+3) selectivity of aminoallyl cation cycloaddition through a sequence of Pd‐allyl transfer and ring closure. A variety of highly substituted or fused pyrrolidine rings were synthesized using the cycloaddition, and can further undergo [1,3] N‐to‐C rearrangement to five‐membered carbocycles with a different palladium catalyst. The utility of the (3+2) cycloaddition is also demonstrated by the preparation of various derivatives from the bicyclic pyrrolidine products.  相似文献   

9.
Liu J  Wendt NL  Boarman KJ 《Organic letters》2005,7(6):1007-1010
[structure: see text] UV irradiation of the powdered crystalline sample of each of three (E,E)-1,4-di(trifluoromethyl-substituted)phenyl-1,3-butadienes (1-3) was found to yield a single [2 + 2] cycloaddition product in the solid state. Moreover, upon irradiation, the crystalline samples of two (E,E)-1,4-di(trifluoromethyl- and fluorine-substituted)phenyl-1,3-butadienes (4, 5) undergo a similar conversion to afford a [2 + 2] cycloaddition product, respectively. Our observations suggest that trifluoromethyl groups can be used to direct 1,4-diphenyl-1,3-butadiene molecules to form a parallel, offset-stacked orientation suitable for topochemical [2 + 2] cycloaddition.  相似文献   

10.
2-aryl thiocarbamoyl benzimidazolium and imidazolinium inner salts derived from benzimidazole and imidazoline carbenes are unique ambident C-C-S and C-C-N 1,3-dipolar systems, which undergo highly efficient and site-selective cycloaddition reactions with dimethyl acetylenedicarboxylate or dibenzoylacetylene to furnish spiro(imidazole-2,3'-thiophene) derivatives in excellent yields. When treated with ethyl propiolate, methyl acrylate or acrylonitrile, spiro(imidazole-2,3'-pyrrole) derivatives were formed in good yields. Theoretical studies revealed an asynchronous concerted mechanism for both the C-C-S and C-C-N 1,3-dipolar cycloaddition reactions. The site selectivity in the [3+2] cycloaddition reaction of ambident 1,3-dipoles was predictably regulated by both the electronic and steric effects of dipolarophiles.  相似文献   

11.
With the aid of computations and experiments, the detailed mechanism of the phosphine-catalyzed [3+2] cycloaddition reactions of allenoates and electron-deficient alkenes has been investigated. It was found that this reaction includes four consecutive processes: 1) In situ generation of a 1,3-dipole from allenoate and phosphine, 2) stepwise [3+2] cycloaddition, 3) a water-catalyzed [1,2]-hydrogen shift, and 4) elimination of the phosphine catalyst. In situ generation of the 1,3-dipole is key to all nucleophilic phosphine-catalyzed reactions. Through a kinetic study we have shown that the generation of the 1,3-dipole is the rate-determining step of the phosphine-catalyzed [3+2] cycloaddition reaction of allenoates and electron-deficient alkenes. DFT calculations and FMO analysis revealed that an electron-withdrawing group is required in the allene to ensure the generation of the 1,3-dipole kinetically and thermodynamically. Atoms-in-molecules (AIM) theory was used to analyze the stability of the 1,3-dipole. The regioselectivity of the [3+2] cycloaddition can be rationalized very well by FMO and AIM theories. Isotopic labeling experiments combined with DFT calculations showed that the commonly accepted intramolecular [1,2]-proton shift should be corrected to a water-catalyzed [1,2]-proton shift. Additional isotopic labeling experiments of the hetero-[3+2] cycloaddition of allenoates and electron-deficient imines further support this finding. This investigation has also been extended to the study of the phosphine-catalyzed [3+2] cycloaddition reaction of alkynoates as the three-carbon synthon, which showed that the generation of the 1,3-dipole in this reaction also occurs by a water-catalyzed process.  相似文献   

12.
The chiral N-heterocyclic carbene-catalyzed [2+2+2] cycloaddition of ketenes and carbon disulfide was realized to give the cycloadduct of 1,3-oxathian-6-ones in good yields with excellent enantioselectivities.  相似文献   

13.
Varela JA  Castedo L  Saá C 《Organic letters》2003,5(16):2841-2844
[reaction: see text] A new "formal" Ru-catalyzed [4+2+2] cycloaddition of 1,6-diynes to 1,3-dienes giving conjugated 1,3,5-cyclooctatrienes and vinylcyclohexadienes is described. This formal cycloaddition is really a tandem process, the Ru(II)-catalyzed formation of (Z)-tetraenes or vinyl-(Z)-trienes followed by a pure thermal conrotatory 8 pi- or disrotatory 6 pi-electrocyclization. The proposed mechanism allows the differences in product ratio to be explained in terms of steric and stereochemical considerations.  相似文献   

14.
《Tetrahedron letters》1988,29(40):5125-5128
Irradiation of benzene solutions containing a cyanoarene sensitizer, 1,3-cyclohexadiene, and a trimethylsilyl enol ether or ketene acetal leads to intermolecular [4+2] and [2+2] cycloaddition products.  相似文献   

15.
Ion/molecule reactions of +CH2OCH2. with alpha-dicarbonyl compounds were performed via pentaquadrupole mass spectrometry. Besides the previously known [3+ + 2] 1,3-cycloaddition reaction that forms cyclic 1,3-dioxonium ions, an unprecedented reaction proceeding formally by [4 + 1+] cycloaddition of ionized methylene (CH2+.) to the alpha-dicarbonyl compounds occurs competitively, leading to the gas-phase synthesis of several ionized 2-unsubstituted 1,3-dioxoles. This novel cycloaddition reaction may therefore be added to the set of methods available for the synthesis of 1,3-dioxoles.  相似文献   

16.
Ethylene trithiocarbonate reacted with dimethyl acetylenedicarboxylate to furnish tetramethyl thiopyran-4-spiro-2'-(1,3- dithiolane)-2,3,5,6-tetracarboxylate,a new thiopyran-4-spiro-2'-(1,3-dithiolane) heterocyclic compound,as the minor product together with the major product dimethyl 2-thioxo-1,3-dithiole-4,5-dicarboxylate.The new heterocycle was probably formed through a[2 + 2]cycloaddition between ethylene trithiocarbonate and dimethyl acetylenedicarboxylate followed by a 1,3-dipolar cycloaddition or[...  相似文献   

17.
2-Methoxybuta-1,3-diene reacts under high pressure conditions in a one-pot domino (4+2)/(4+2)/(3+2) cycloaddition reaction with a dienophile, β-nitrostyrene and a dipolarophile to give tri, tetra and pentacyclic nitroso acetals. In this novel domino reaction up to six bonds and up to eight stereogenic centers are created in one step in good yield and good stereoselectivity.  相似文献   

18.
Pyridines, which comprise one of the most important classes of the six-membered heterocyclic compounds, are widely distributed in nature, and the transition-metal-catalyzed [2 + 2 + 2] cycloaddition reaction of two alkynes and a nitrile is one of the most powerful methods for preparing versatile, highly substituted pyridine derivatives. However, the lack of chemo- and regioselectivity is still a crucial issue associated with fully intermolecular [2 + 2 + 2] cycloaddition. The present study developed the Ni(0)-catalyzed intermolecular dehydrogenative [4 + 2] cycloaddition reaction of 1,3-butadienes with nitriles to give a variety of pyridines regioselectively.  相似文献   

19.
To explore a novel concept for controlling diastereoselectivity, systematic studies on the sense and degree of diastereotopic groups and face selections in intramolecular [3 + 2] (nitrile oxide and nitrone) and [2 + 2 + 1] (Pauson-Khand) cycloadditions have been conducted. Optically pure methyl (S)-3,4-O-isopropylidene-3,4-dihydroxybutanoate (5) and methyl (S)-2,3-O-isopropylidene-2,3-dihydroxypropanoate (6) were converted to substrate aldehydes (1-4) that bear geminal allyl groups and four types of controllers with the intention of imparting a stereochemical bias to the allylic groups and their faces. The controllers involve 1,2-bis(tert-butyldimethylsiloxy), 1,3-bis(tert-butyldimethylsiloxy), 1,2-acetonide, and 1,3-acetonide groups, which are referred to as 1,2-(TBDMSO)(2), 1,3-(TBDMSO)(2), 1,3-dioxolane, and 1,3-dioxane, respectively. Twelve runs of cycloaddition reactions as combinations between the three types of reactions and the four types of substrates were performed to provide bicyclo[4.3.0] or -[3.3.0] adducts of synthetic importance in which isoxazolidine, isoxazoline, or cyclopentenone segments were fused. For every case, high levels of diastereoselectivity have been achieved: >99% (in eight cases), 82%, and 76% for the discrimination of diastereotopic groups and 68-->99% for the discrimination of diastereotopic faces. On the basis of the absolute structures of the cycloadducts, plausible stereochemical models are proposed.  相似文献   

20.
Transition metal-catalyzed cycloaddition reactions represent powerful methods for the construction of complex polycyclic systems. We have developed a new intermolecular metal-catalyzed [4 + 2 + 2] cycloaddition of heteroatom-tethered enyne derivatives with 1,3-butadiene. This study demonstrates that excellent selectivity can be obtained for the heterocycloaddition adducts through the judicious choice of silver salt. The development of the tandem rhodium-catalyzed allylic substitution [4 + 2 + 2] cycloaddition provides a convenient three-component coupling that circumvents the prior formation of the enyne derivative. Finally, the introduction of a stereogenic center at C-2 leads to a diastereoselective cycloaddition, which provides a powerful new method for the construction of bicyclic octanoid ring systems applicable to target directed synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号