首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
Cationic liposomes composed of dipalmitoylphosphatidylcholine (DPPC) and dipalmityldimethylammmonium bromide (DPAB) were prepared by the Bangham method and the effect of DPAB on the membrane properties was examined in terms of liposomal shape, particle size, trapping efficiency, surface potential and dispersibility. The dispersibility of the mixed DPPC/DPAB liposomes (the mole fraction of DPAB (XDPAB)  0.05) was excellent and the dispersibility was maintained for 6 months, since the zeta-potential of the mixed liposomes was approximately +40 mV. The trapping efficiency of the mixed DPPC/DPAB liposomes (XDPAB = 0.05) was 10 times greater than that of the DPPC liposomes, and the value was largest among the mixed liposomes (XDPAB = 0–1.0). Freeze-fracture electron micrographs indicated that the shape of the mixed DPPC/DPAB liposomes (XDPAB = 0.05) was that of large unilamellar vesicles (LUVs) with a diameter of approximately 2 μm, while the shape of the DPPC liposomes was that of multilamellar vesicles (MLVs). The mixed liposomes had, therefore, a high trapping efficiency. Furthermore, the shape of the mixed DPPC/DPAB liposomes (XDPAB = 0.75) was also that of LUVs with a diameter of approximately 2 μm and these had a high trapping efficiency. Whereas, the particle size (500 nm) of the mixed DPPC/DPAB liposomes (XDPAB = 0.25) was smaller than that of the former and had the minimum trapping efficiency. The phase transition temperature of the liposomal bilayer membranes indicated a maximum value at 0.25–0.30 mole fractions of DPAB. These facts were considered to be due to the fact that DPPC and DPAB, whose molar ratio was 7.5:2.5, were tightly packed in the liposomal bilayer membranes and that the curvature of the liposomal particle was resultantly large. Nevertheless, LUVs having a high trapping efficiency were easily obtained by mixing a small amount of DPAB with the DPPC.  相似文献   

2.
A new layered perovskite Sr2Al0.78Mn1.22O5.2 has been synthesized by solid state reaction in a sealed evacuated silica tube. The crystal structure has been determined using electron diffraction, high-resolution electron microscopy, and high-angle annular dark field imaging and refined from X-ray powder diffraction data (space group P4/mmm, a=3.89023(5) Å, c=7.8034(1) Å, RI=0.023, RP=0.015). The structure is characterized by an alternation of MnO2 and (Al0.78Mn0.22)O1.2 layers. Oxygen atoms and vacancies, as well as the Al and Mn atoms in the (Al0.78Mn0.22)O1.2 layers are disordered. The local atomic arrangement in these layers is suggested to consist of short fragments of brownmillerite-type tetrahedral chains of corner-sharing AlO4 tetrahedra interrupted by MnO6 octahedra, at which the chain fragments rotate over 90°. This results in an averaged tetragonal symmetry. This is confirmed by the valence state of Mn measured by EELS. The relationship between the Sr2Al0.78Mn1.22O5.2 tetragonal perovskite and the parent Sr2Al1.07Mn0.93O5 brownmillerite is discussed. Magnetic susceptibility measurements indicate spin glass behavior of Sr2Al0.78Mn1.22O5.2. The lack of long-range magnetic ordering contrasts with Mn-containing brownmillerites and is likely caused by the frustration of interlayer interactions due to presence of the Mn atoms in the (Al0.78Mn0.22)O1.2 layers.  相似文献   

3.
MgAl2O4 was successfully used as a crystalline host network for the synthesis of nickel-based nano cyan refractory ceramic pigments. Different compositions of NixMg1−xAl2O4 (0.1 ? x ? 0.8) powders have been prepared by using a low temperature combustion reaction (LTCR) of the corresponding metal nitrates with urea (U) as a fuel at 300 °C in an open air furnace. The as-synthesized samples were characterized by thermal analysis (TG-DTG/DTA), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). UV-Vis and diffuse reflectance spectroscopy (DRS) using CIE- Lab parameters methods have been used for color measurements. The results show that the NixMg1−xAl2O4 samples are the crystalline phase with a particle size of 8.85-43.66 nm in the temperature range 500-1200 °C. The density, particle size, shape and color are determined for all the prepared samples with different calcination times and temperatures.  相似文献   

4.
Detergent removal from mixed micelles was combined with preparative size exclusion chromatography (SEC) on Sephacryl S 500 HR to prepare unilamellar and spherical liposomes of defined sizes between 50 and 100 nm with a very narrow size distribution (RSD of vesicle diameter between 13% and 25%). For neutral phosphatidylcholine and negatively charged phosphatidylcholine/phosphatidylglycerol liposome preparations, efficient sizing at the preparative scale was demonstrated by analyzing isolated SEC peak fractions with cryo-transmission electron microscopy and dynamic light scattering. The number-weighted average vesicle diameters obtained using both methods are in very good agreement for fractions of low polydispersity.  相似文献   

5.
Adsorption technology is widely considered as the most promising and robust method of purifying water at low cost and with high-efficiency. Carbon-based materials have been extensively explored for adsorption applications because of their good chemical stability, structural diversity, low density, and suitability for large scale production. Graphene – a single atomic layer of graphite – is the newest member in the family of carbon allotropes and has emerged as the “celeb” material of the 21st century. Since its discovery in 2004 by Novoselov, Geim and co-workers, graphene has attracted increased attention in a wide range of applications due to its unprecedented electrical, mechanical, thermal, optical and transport properties. Graphene's infinitely high surface-to-volume ratio has resulted in a large number of investigations to study its application as a potential adsorbent for water purification. More recently, other graphene related materials such as graphene oxide, reduced graphene oxide, and few-layered graphene oxide sheets, as well as nanocomposites of graphene materials have also emerged as a promising group of adsorbent for the removal of various environmental pollutants from waste effluents. In this review article, we present a synthesis of the current knowledge available on this broad and versatile family of graphene nanomaterials for removal of dyes, potentially toxic elements, phenolic compounds and other organic chemicals from aquatic systems. The challenges involved in the development of these novel nanoadsorbents for decontamination of wastewaters have also been examined to help identify future directions for this emerging field to continue to grow.  相似文献   

6.
In this review, some established concepts from Colloidal Science and their application to graphene and carbon nanotubes dispersions in organic or aqueous media are highlighted to rationalize alternatives for some issues in terms of colloidal properties. Recent applications for carbon-based dispersions are presented, as well as van der Waals interactions in carbon materials and strategies to overcome these interactions, such as increasing electrostatic repulsion between dispersed particles, surface functionalization, or adsorption of passivation agents such as macromolecules, which are the basis of many dispersion and exfoliation procedures. The demonstration of how knowledge and fine control of colloidal interactions have been used to overcome several limitations, such as the preparation of stable and concentrated dispersions of carbon materials and keeping appreciable electrical conductivity, is presented. It is also showed that the same knowledge can help the development of more environmentally friendly carbon-based colloids as well as the improvement of similar systems as dispersions of two-dimensional materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号