首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The selective in situ synthesis of trans and cis(CH3CN)-[Ru(bpy)(CO)2 (CH3CN)2]2+ isomers from the same [Ru(CO)2 (CH3CN)3]22+ dimer precursor but using either an electrochemical-chemical or chemical-electrochemical process is described.  相似文献   

2.
The mono-bipyridine bis carbonyl complex [Ru(bpy)(CO)2Cl2] exists in two stereoisomeric forms having a trans(Cl)/cis(CO) (1) and cis(Cl)/cis(CO) (2) configuration. In previous work we reported that only the trans(Cl)/cis(CO) isomer 1 leads by a two-electron reduction to the formation of [Ru(bpy)(CO)2]n polymeric film on an electrode surface. This initial statement was overstated, as both isomers allowed the build up of polymers. A detailed comparison of the electropolymerization of both isomers is reported here, as well as the reduction into dimers of parent stereoisomer [Ru(bpy)(CO)2(C(O)OMe)Cl] complexes 3 and 4 obtained as side products during the synthesis of 1 and 2.  相似文献   

3.
Cyclohexane solutions of [W(Cp)(CO)3]2 and [Mo(Cp)(CO)3]2 exhibit weak bimodal emission spectra when excited With 354 nm picosecond pulses, but do not luminesce when pumped at 530 nm. Picosecond lifetimes characterize the short-wavelength, emission bands, which may originate from metal-cyclopentadienyl CT excited states.  相似文献   

4.
5.
The double complex salts [Ru(NH3)5Cl][PtCl6] (I) and [Ru(NH3)5Cl]2[PtCl6]Cl2 (II) were synthesized and studied by X-ray diffraction. They were found to be isostructural to the previously synthesized [Rh(NH3)5Cl][OsCl6] and [Ir(NH3)5Cl]2[PtCl6]Cl2. The thermolysis of the complexes in the atmosphere of hydrogen and helium was studied by the powder X-ray diffraction analysis. The product of the salt I thermolysis is a single-phase solid solution Ru0.5Pt0.5 (a = 3.857(3) ?), the thermolysis of salt II results in a double-phase metallic powder. Original Russian Text ? S.A. Martynova, K.V. Yusenko, I.V. Korol’kov, S.A. Gromilov, 2007, published in Koordinatsionnaya Khimiya, 2007, Vol. 33, No. 7, pp. 541–545.  相似文献   

6.
The cluster [Os3(CO)10(MeCN)2] reacts with 2,2′-dipyridyl disulphide (1, pySSpy) to give a range of oxidative addition products which were separated by TLC on silica and crystallization : [Os3(pyS)2(CO)10] (2), [Os3(pyS)2(CO)9] (3), [Os2(pyS)2(CO)6] (4) and [Os(pyS)2(CO)2] (5), together with some of the hydride [Os3H(pyS)(CO)9] (6), which is not an expected oxidative addition product. The X-ray crystal structures of compounds 2, 3, 4 and 6 (compounds 2 and 6 occurring within a single crystal), together with the known structure of compound 5, reveal several modes of pyS bonding : chelating pyS, μ2-pyS (both sulphur-bonded and nitrogen, sulphur-bonded) and μ3-pyS.  相似文献   

7.
The ground- and excited-state structures for a series of Os(II) diimine complexes [Os(NN)(CO)2I2] (NN = 2,2′-bipyridine (bpy) (1), 4,4′-di-tert-butyl-2,2′-bipyridine (dbubpy) (2), and 4,4′-dichlorine-2,2′-bipyridine (dclbpy) (3)) were optimized by the MP2 and CIS methods, respectively. The spectroscopic properties in dichloromethane solution were predicted at the time-dependent density functional theory (TD-DFT, B3LYP) level associated with the PCM solvent effect model. It was shown that the lowest-energy absorptions at 488, 469 and 539 nm for 13, respectively, were attributed to the admixture of the [dxy (Os) → π*(bpy)] (metal-to-ligand charge transfer, MLCT) and [p(I) → π*(bpy)] (interligand charge transfer, LLCT) transitions; their lowest-energy phosphorescent emissions at 610, 537 and 687 nm also have the 3MLCT/3LLCT transition characters. These results agree well with the experimental reports. The present investigation revealed that the variation of the substituents from H → t-Bu → Cl on the bipyridine ligand changes the emission energies by altering the energy level of HOMO and LUMO but does not change the transition natures.  相似文献   

8.
9.
The reaction of [Ru(CO)2(PPh3)3] (1) with o-styryldiphenylphophine (SP) (2) gave [Ru(CO)2(PPh3)(SP)] (3) in 83% yield. This styrylphosphine ruthenium complex 3 can also be synthesized by the reaction of [Ru(p-MeOC6H4NN)(CO)2(PPh3)2]BF4 (4) with NaBH4 and 2 in 50% yield. When “Ru(CO)(PPh3)3” generated by the reaction of [RuH2(CO)(PPh3)3] (8) with trimethylvinylsilane reacted with 2, [Ru(CO)(PPh3)2(SP)] (10) was produced in moderate yield as an air sensitive solid. The spectral and X-ray data of these complexes revealed that the coordination geometries around the ruthenium center of both complexes corresponded to a distorted trigonal bipyramid with the olefin occupying the equatorial position and the C-C bonding in the olefin moiety in 3 and 10 contained a significant contribution from a ruthenacyclopropane limiting structure. Complexes 3 and 10 showed catalytic activity for the hydroamination of phenylacetylene 11 with aniline 12. Ruthenium complex 3 in the co-presence of NH4PF6 or H3PW12O40 proves to be a superior catalyst system for this hydroamination reaction. In the case of the reaction using H3PW12O40 as an additive, ketimines (13) was obtained in 99% yield at a ruthenium-catalyst loading of 0.1 mol%. Some aniline derivatives such as 4-methoxy, 4-trifluoromethyl-, and 4-bromoanilines can also be used in this hydroamination reaction.  相似文献   

10.
Binary complex salts [Ru(NH3)5Cl][ReCl6] and [Ru(NH3)5Cl]2[ReCl6]Cl2 were synthesized and characterized. An X-ray diffraction analysis showed that they were isostructural with the previously obtained isoformula salts [Rh(NH3)5Cl][OsCl6] and [Ir(NH3)5Cl]2[PtCl6]Cl2, respectively. Thermolysis of these compounds under hydrogen and helium was studied. According to X-ray phase analysis data, bimetallic solid solutions Ru0.67Re0.33 and Ru0.50Re0.50 were the final products of thermolysis. Their unit cell parameters correspond to the characteristics of alloys with similar compositions. Original Russian Text Copyright ? 2009 by S. A. Martynova, K. V. Yusenko, I. V. Korolkov, I. A. Baidina, and S. V. Korenev __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 50, No. 1, pp. 126–132, January–February, 2009.  相似文献   

11.
Reaction of the complexes Ru(CO)2Cl2L [L = 2,2′-bipyridyl (bpy) or 1,10-phenanthroline (phen)] with trifluoromethanesulphonic acid under carefully controlled conditions yields Ru[cis-(CO)2] [cis-(O3SCF3)2] (bidentate complexes. From reactions of the trifluoromethanesulphonates with the appropriate bidentate ligands, the new complexes [cis-Ru(CO)2-L(L′)]2+ (L as above; L′ = 4,4′-dimethyl-2,2′-bipyridyl or 4,4′-diisopropyl-2,2′-bipyridyl) as well as the known [cis-Ru(CO)2L2]2+ and [cis-Ru(CO)2bpy(phen)]2+ have been prepared.  相似文献   

12.
13.
The small di- and triatomic molecules [SN]+ and [SNS]+ have shown versatile chemistries and [SNS]+ is an important starting reagent for many sulfur-nitrogen radicals. However, their chemistry is limited to the more polar solvents (e.g. SO2). In this work an attempt is made to increase their solubility in less polar solvents by exchange of the usual [MF6] (M = As, Sb) anions by the large and weakly coordinating [Al(OC(CF3)3)4]. As expected the metathesis reactions of [SN][AsF6] and [SNS][SbF6] with Li[Al(OC(CF3)3)4] in liquid sulfur dioxide resulted in the formation of the insoluble Li[SbF6], which is the driving force for these metathesis reactions. The characterization of the compounds by IR and multinuclear NMR revealed that [SNS]+ formed a [Al(OC(CF3)3)4] salt in a clean reaction. A preliminary crystal structure of [SNS][Al(OC(CF3)3)4] is presented. The solubility of [SNS][Al(OC(CF3)3)4] in CH2Cl2 is significantly increased with respect to the corresponding [MF6] salts, and potentially opens up new areas of [SNS]+ chemistry. The reaction of the more reactive [SN]+ with Li[Al(OC(CF3)3)4] was less clear. Multinuclear NMR and IR spectra were consistent with the formation of [SN][Al(OC(CF3)3)4], which also showed significant decomposition.  相似文献   

14.
The singlet-triplet separations for the edge-sharing bioctahedral (ESBO) complex W2(μ-H)(μ-Cl)(Cl4(μ-dppm)2 · (THF)3 (II) has been studied by 31P NMR spectroscopy. The structural characterization of [W2(μ-H)2(μ-O2CC6H5)2Cl2(P(C6H5)3)2] (I) by single-crystal X-ray crystallography has allowed the comparison of the energy of the HOMOLUMO separation determined using the Fenske-Hall method for a series of ESBO complexes with two hydride bridging atoms, two chloride bridging atoms and the mixed case with a chloride and hydride bridging atom. The complex representing the mixed case, [W2(μ-H)(μ-Cl)Cl4(μ-dppm)2 · (THF)3] (II), has been synthesized and the value of −2J determined from variable-temperature 31P NMR spectroscopy.  相似文献   

15.
The fluorocarbon soluble, binuclear ruthenium(I) complexes [Ru(μ-O2CMe)(CO)2LF]2, where LF is the perfluoroalkyl substituted tertiary phosphine, P(C6H4-4-CH2CH2(CF2)7CF3)3, or P(CH2CH2(CF2)5CF3)3, were synthesized and partition coefficients for the complexes in fluorocarbon/hydrocarbon biphases were determined. Catalytic hydrogenation of acetophenone to 1-phenylethanol in benzotrifluoride at 105 °C occured in the presence of either [Ru(μ-O2CMe)(CO)2P(C6H4-4-CH2CH2(CF2)7CF3)3]2 (1) or [Ru(μ-O2CMe)(CO)2P(CH2CH2(CF2)5CF3)3]2 (2). The X-ray crystal structure of [Ru(μ-O2CMe)(CO)2P(CH2CH2(CF2)5CF3)3]2 was determined. The compound exhibited discrete regions of fluorous and non-fluorous packing.  相似文献   

16.
Treatment of ruthenium complexes [CpRu(AN)3][PF6] (1a) (AN=acetonitrile) with iron complexes CpFe(CO)2X (2a–2c) (X=Cl, Br, I) and CpFe(CO)L′X (6a–6g) (L′=PMe3, PMe2Ph, PMePh2, PPh3, P(OPh)3; X=Cl, Br, I) in refluxing CH2Cl2 for 3 h results in a triple ligand transfer reaction from iron to ruthenium to give stable ruthenium complexes CpRu(CO)2X (3a–3c) (X=Cl, Br, I) and CpRu(CO)L′X (7a–7g) (L′=PMe3, PMe2Ph, PMePh2, PPh3, P(OPh)3; X=Br, I), respectively. Similar reaction of [CpRu(L)(AN)2][PF6] (1b: L=CO, 1c: P(OMe)3) causes double ligand transfer to yield complexes 3a–3c and 7a–7h. Halide on iron, CO on iron or ruthenium, and two acetonitrile ligands on ruthenium are essential for the present ligand transfer reaction. The dinuclear ruthenium complex 11a [CpRu(CO)(μ-I)]2 was isolated from the reaction of 1a with 6a at 0°C. Complex 11a slowly decomposes in CH2Cl2 at room temperature to give 3a, and transforms into 7a by the reaction with PMe3.  相似文献   

17.
Reaction of Ru(PPh3)2Br2 with the NNS chelating tridentate ligand 2-pyridyl-N-(2′-methylthiophenyl)methyleneimine (L) led to the isolation of the ruthenium(II) complex [Ru(L)(PPh3)Br2]. Reactivity of this complex with different bidentate chelating ligands revealed that the products are quite different from those obtained by reacting Ru(L)(PPh3)Cl2 (the corresponding cis dichloro complex) with the same ligands under comparable conditions. The mixed chelates were isolated and characterised by elemental analysis, magnetic moment measurement and by different spectroscopic methods along with their precursor. Electrochemistry of the complexes was examined by cyclic voltammetry using a platinum working electrode and a Ag/AgCl electrode as reference. The crystal structure of [Ru(L)(PPh3)Br2] disclosed that, unlike Ru(L)(PPh3)Cl2, the two bromo ligands are in trans position and this explained the difference in its reactivity pattern from the corresponding chloro complex.  相似文献   

18.
许多化学工作者对单齿膦配体(PPh3,PBun3,PEt2Ph,P(OEt)3,P(OC6H5)3)与母体簇合物FeCo2(CO)9(μ3-S)的取代反应进行过详细研究[1-3],但对双齿膦配体与母体簇合物的取代反应研究报导较少.Aime[4]合成了含双齿膦配体的簇合物FeCo2(CO)7(μ3-S)(Ph2PCH2PPh2),并用13CNMR和IR光谱方法对其结构进行了表征.到目前为止,含双齿膦配体的该类簇合物的晶体与分子结构还未见报导.RosannaRossetti[2]通过研究母体簇合物与…  相似文献   

19.
Structures of non metal-metal bonded phosphido-bridged heterobimetallic complexes, including CpFe(CO)2(μ-PPh2)W(CO)5 (1-W) and metal-metal bonded CpFe(CO)(μ-CO)(μ-PPh2)W(CO)4 (2), were determined by a single crystal X-ray diffraction study. In 1-W, the long distance between Fe and W indicates no metal-metal bond to exist. In 2, a Fe---W bond with bond length 2.851 Å and a semibridging carbonyl with W---C---O angle 153° were observed. Mössbauer spectra of 1-W and 2 were taken at 77 K. Isomer shifts of 1-W and 2 were − 0.0203 mm s−1 and 0. 1917 mm s−1 respectively.  相似文献   

20.
The iridium(I) complex [Ir(CO2Me)(CO)2(PPh3)2] undergoes a transesterification reaction with the alcohols CH2C(R)CH2OH (R = H, Me), MeCCCH2CH2OH, and HOCH2CH2OH to afford the complexes
[Ir(CO2CH2CH2CMe)(CO)2(PPh3)2] and [Ir(CO2CH2CH2OH)(CO)2(PPh3)2], respectively. In contrast the acetylenic alcohol HCCCH2CH2OH gives [Ir(CCCH2CH2OH)(CO)PPh3)2]. Some reactions of the new complexes are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号