首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pulsed laser deposition (PLD) was used to grow nanocrystalline SnO2 thin films onto glass substrates. The nanocrystallites and microstructures in SnO2 thin films grown by PLD techniques have been investigated in detail by using X-ray diffraction and high-resolution transmission electron microscopy (HRTEM). The PLD process was carried out at room temperature under a working pressure of about 2×10−6 mbar. Experimental results indicate that thin films are composed of a polycrystalline SnO2 and an amorphous SnO phase. In particular, the presence of such an amorphous SnO phase in the thin films greatly limits their practical use as gas-sensing devices. HRTEM observations revealed that SnO2 nanocrystallites with tetragonal rutile structure embed in an amorphous SnO matrix, which are approximatively equiaxed. These approximatively equiaxed SnO2 nanocrystallites contain a high density of defects, such as twin boundaries and edge dislocations. The grain growth of SnO2 thin films may be discussed in terms of the coalescent particle growth mechanism.  相似文献   

2.
Nanocrystalline silicon (nc-Si) embedded a-SiC:H films were deposited by hot-wire chemical vapor deposition (HWCVD) using SiH4, CH4 and H2 gas precursors. The films were characterized by small-angle X-ray scattering, X-ray diffraction (XRD) and Raman spectroscopy to analyze their structural and fractal nature. The analysis of a-SiC:H films indicated the scattering from mass fractal aggregates of amorphous and nanocrystalline domains of nano-Si. The XRD results indicated that the size and crystallite fraction of nanocrystallites decreased with increasing CH4 flow rate. Nc-Si changed from the mass fractal to the surface fractal with increasing CH4 flow rate. The inter-diffusion correlation length between nc-Si embedded a-SiC:H varies from 2.4 nm to 5.7 nm with a CH4 flow rate.  相似文献   

3.
Hierarchical‐structured nanotubular silica/titania hybrids incorporated with particle‐size‐controllable ultrafine rutile titania nanocrystallites were realized by deposition of ultrathin titania sandwiched silica gel films onto each nanofiber of natural cellulose substances (e.g., common commercial filter paper) and subsequent flame burning in air. The rapid flame burning transforms the initially amorphous titania into rutile phase titania, and the silica gel films suppress the crystallite growth of rutile titania, thereby achieving nano‐precise size regulation of ultrafine rutile titania nanocrystallites densely embedded in the silica films of the nanotubes. The average diameters of these nanocrystallites are adjustable in a range of approximately 3.3–16.0 nm by a crystallite size increment rate of about 2.4 nm per titania deposition cycle. The silica films transfer the electrons activated by crystalline titania and generate catalytic reactive species at the outer surface. The size‐tuned ultrafine rutile titania nanocrystallites distributed in the unique hierarchical networks significantly improve the photocatalytic performance of the rutile phase titania, thereby enabling a highly efficient photocatalytic degradation of the methylene blue dye under ultraviolet light irradiation, which is even superior to the pure anatase‐titania‐based materials. The facile stepwise size control of the rutile titania crystallites described here opens an effective pathway for the design and preparation of fine‐nanostructured rutile phase titania materials to explore potential applications.  相似文献   

4.
The structure and growth of thin films of aniline vapor deposited on Ag(111) and Ag(110) surfaces have been examined using optical second harmonic generation (SHG) and linear optical differential reflectivity (DR). Aniline thin films deposited at 90 K give a detectable SH signal that arises from small polycrystallites with orientation anisotropy in the film. Upon annealing, the SH signal decreases, first due to premelting (at approximately 145 K) of the polycrystallites and then sublimation (at approximately 180 K) of the film. Quantitative analysis of the SH intensity change by a premelting model [J. Phys. Chem. 1988, 92, 7241] allows the determination of the average size of the crystallites as 1.1 nm in diameter and containing approximately 45 aniline molecules. The existence of the nanocrystalline structure and its premelting are confirmed by DR experiments. The DR signal around 145 K exhibits change corresponding to an order-disorder transition. Quantitative analysis of the DR data results in the same nanocrystallite size. Experimental observations indicate that films deposited at 90 K contain not only nanocrystallites but also approximately 30% porosity, which can be reduced by annealing. At temperatures above 195 K, micron-size crystallites start to form within the amorphous film, causing a large amount of light scattering while the film sublimates. It appears that, for molecules such as aniline with stronger intermolecular interactions, more enthalpy is released, upon adsorption to the local surrounding molecules, causing them to reorient into crystalline form. The low deposition temperature, on the other hand, prevents diffusion for further crystallization beyond nanocrystallites. The refractive index of the amorphous aniline solid can be determined as 1.68 +/- 0.03.  相似文献   

5.
《Solid State Sciences》2012,14(6):715-718
ZnO nanoparticles-embedded diamond-like amorphous (DLC) carbon films have been prepared by electrochemical deposition. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) results confirm that the embedded ZnO nanoparticles are in the wurtzite structure with diameters of around 4 nm. Based on Raman measurements and atomic force microscope (AFM) results, it has been found that ZnO nanoparticles embedding could enhance both graphitization and surface roughness of DLC matrix. Also, the field electron emission (FEE) properties of the ZnO nanoparticles-embedded DLC film were improved by both lowering the turn-on field and increasing the current density. The enhancement of the FEE properties of the ZnO-embedded DLC film has been analyzed in the context of microstructure and chemical composition.  相似文献   

6.
Co-Se thin films prepared by magnetron sputtering have shown significant activity for the oxygen reduction reaction. One sample, after sectioning by ultramicrotomy, was studied by high-resolution scanning transmission electron microscopy (HRSTEM) and scanning Auger microscopy (SAM), and X-ray diffraction (XRD) was used for characterizing further samples. These thin films were shown to have Co-Se nanocrystals embedded into Se-rich matrices. The TEM and XRD results were consistent with the nanocrystallites being non-stoichiometric with structures related to those of monoclinic Co1−xSe (x=0.125-0.25).  相似文献   

7.
Morphology and structure of amorphous carbon films deposited with a pulsed arc source (LASER-ARC) have been studied using microscopical methods (SEM, TEM and AFM), electron diffraction and spectroscopical investigation (EELS). The parameters of the arc source and the deposition conditions (substrate temperature) influence morphology and structure of deposited amorphous carbon films. Especially the incorporation and growth of particles, embedded in the film have been investigated. By particle analysis using an optical microscope a majority of particles that is smaller than 500 nm has been determined. The morphology has been also demonstrated similar by AFM and TEM images. Their number and size of particles is strongly influenced by the deposition temperature. The structure of amorphous film is characterized by the EELS-spectra, but the particle structure was not detectable.  相似文献   

8.
The structural evolution of sol-gel derived lead zirconate titanate (PZT) precursor films during and after physical drying was investigated by transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), selected area electron diffraction (SAED), and time-resolved X-ray diffraction (XRD). Films were deposited from initial 0.3 mol/dm(3) precursor sols with varying hydrolysis ratios. Zr-rich grains of 1-10 nm size, embedded in a Pb-, Zr-, and Ti-containing amorphous matrix were found in as-dried films. The Zr-rich regions were crystalline at hydrolysis ratios [H(2)O]/[PZT] < 27.6, and amorphous at ratios > 100. X-ray diffraction analysis of PZT and zirconia sols revealed that the crystalline nanoparticles in both sols are identical and are probably composed of nanosized zirconium oxoacetate-like clusters. This study demonstrates that time-resolved X-ray diffraction combined with electron energy loss spectroscopy mapping is a powerful tool to monitor the nanoscale structural evolution of sol-gel derived thin films.  相似文献   

9.
The structure of the very strong solid Lewis acid aluminum chlorofluoride (ACF, AlCl(x)F(3-x), x = 0.05-0.3) was studied by IR, ESR, Cl K XANES, (19)F MAS NMR, and (27)Al SATRAS NMR spectroscopic methods and compared with amorphous aluminum fluoride conventionally prepared by dehydration of alpha-AlF(3) x 3H(2)O. The thermal behavior of both compounds was investigated by DTA and XRD. In comparison to ACF, amorphous AlF(3) prepared in a conventional way is not catalytically active for the isomerization reaction of 1,2-dibromohexafluoropropane, which requires a very strong Lewis acid. Both compounds are mainly built up of corner-sharing AlF(6) octahedra forming a random network. The degree of disorder in ACF is higher than in amorphous AlF(3). Terminal fluorine atoms were detected in ACF by (19)F NMR. The chlorine in ACF does not exist as a separate, crystalline AlCl(3) phase. Additionally, chlorine-containing radicals, remaining from the synthesis, are trapped in cavities of ACF. These radicals are stable at room temperature but do not take part in the catalytic reaction.  相似文献   

10.
The behavior of sol-gel prepared thin films exhibiting a gasochromic effect; i.e., a reversibly change in colour from transparent when in air to blue when in H2, has been studied. The films were prepared from a Pd (PdCl2) doped peroxopolytungstic acid sol using a dip-coating technique. Transmission electron microscopy together with selected area electron diffractrometry revealed that the films consist of monoclinic and hexagonal nanocrystalline grains (2–5 nm) embedded in an amorphous phase. This amorphous hydrated phase was established using Infrared (IR) and Raman spectroscopy. Characteristic vibrations observed in the in-situ IR spectra of the coloured and bleached states revealed the presence and the importance of terminal W=O and W—OH2 groups in the colouring of the films. Colouring/bleaching changes of Pd doped W-PTA films observed using in-situ UV-Vis spectroscopy are described in terms of Pd concentration, and the number of reducing/oxidising cycles. The rate of colouring/bleaching is greater for films containing a higher concentration of Pd but the change in the optical density does not increase, i.e., shows saturation.  相似文献   

11.
Highly C‐axis oriented ZnO thin film was manufactured by radio‐frequency magnetron sputtering technique on Si (111) substrate. The main objective was to study the influence of rapid thermal annealing (RTA) temperature on the structure and interfacial characteristic of ZnO thin films. X‐ray diffraction results showed that the ZnO thin films annealed at 600 °C by RTA technique had a perfect C‐axis preferred orientation compared to the other ZnO thin films, and the full width at half maximum of ZnO (002) rocking curve measurements indicted that the RTA‐annealed ZnO thin films possessed better crystal structure. Atom force microscopy displayed that the grain size of RTA‐annealed ZnO thin films was fine and uniform compared with the as‐deposited ZnO thin films, although the grains grew in RTA process and the root meant square roughness was smaller than that of as‐deposited films. High‐resolution transmission electron microscopy showed that there was an obvious amorphous layer between ZnO thin films and Si substrate, but the RTA‐annealed ZnO thin films exhibited larger and denser columnar structure and a preferred orientation with highly c axis perpendicular to the amorphous layer. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Fullerene‐like hydrogenated carbon films were deposited on Si substrate by plasma‐enhanced chemical vapor deposition. The microstructures of films were characterized by high‐resolution transmission electron microscopy and Raman spectrum. The tribological performance of films was tested by reciprocating ball‐on‐disc tester under 1‐ethyl‐3‐methylimidazolium tetrafluoroborate ionic liquid. The surface morphology and chemical composition of wear tracks and wear rates were investigated by optical microscope, X‐ray photoelectron spectroscopy, and 3D surface profiler. The results indicated that the film with a typical fullerene‐like structure embedded into the amorphous sp2 and sp3 carbon networks could be prepared successfully, and the film shows a higher hardness (26.7 GPa) and elastic recovery (89.9%) compared with the amorphous carbon film. Furthermore, the film shows a lower friction coefficient at low contact load and friction frequency, and excellent wear‐resistance performance at high load and frequency under ionic liquid lubrication. Meanwhile, the wear life of fullerene‐like hydrogenated carbon films could be improved significantly using ionic liquid as a lubrication material. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Metal-containing amorphous hydrogenated carbon films are of high interest for industrial applications because of their excellent frictional properties, their high abrasive wear resistance and their electrical conductivity, which can be adjusted in a range of 10–12 orders of magnitude. In order to get insight into the mechanical and electrical properties it is necessary to study the nanostructure of the films. The structure consists of small nanometer sized metallic or carbidic particles, which are embedded in a three dimensional amorphous hydrogen-carbon matrix. Anomalous small angle X-ray scattering (ASAXS) and scanning tunneling microscopy (STM) have been used to determine size- and distance-distributions of the particles as a function of metal content. Problems and restrictions of both methods will be discussed. Furthermore the capabilities of scanning probe techniques to distinguish different materials on a nanometer scale (material contrast) have been studied employing barrier height imaging (dI/dz) and friction force microscopy.Dedicated to Professor Dr. rer. nat. Dr. h. c. Hubertus Nickel on the occasion of his 65th birthday  相似文献   

14.
Tungsten trioxide‐incorporated hydrogenated amorphous carbon (WO3/a‐C:H) films have been fabricated on a single‐crystal silicon wafer by liquid phase electrodeposition using methanol as carbon source and tungsten carbonyl as incorporated reagent. The morphology, composition and structure of the films have been investigated by SEM, XPS, Raman scattering spectroscopy, Fourier transform infrared spectroscopy (FTIR) and Transmission electron microscope (TEM), respectively. The effects of WO3 incorporation on the electrical and wetting properties were studied in detail. The characterization results showed that tungsten trioxide nanocrystalline particles with diameters in the range of 10–20 nm were homogenously embedded in the amorphous carbon films. Also, the electrical conductivity and wetting ability of the films were strongly improved due to the contribution of the tungsten trioxide. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Hydrogenated nanocomposite aluminum/carbon thin films (Al/a‐C:H) were fabricated on stainless steel and silicon wafer substrates via unbalanced reactive magnetron sputtering from an Al target in CH4/Ar plasma. The composition and structure of Al/a‐C:H films were investigated by high‐resolution transmission electron microscope (HRTEM), XPS and micro‐Raman spectroscopy. Nanoindenter, interferometer and ball‐on‐disc tribometer were carried out to evaluate the hardness, internal stress and tribological properties of Al/a‐C:H films. HRTEM observations confirmed that the metallic Al nanocrystallites were uniformly dispersed in the amorphous carbon matrix. XPS and Raman analyses indicated that the sp2 content increased with the increase of Al content in the films. Nanoindenter and interferometer tests exhibited that the uniform incorporation of Al nanocrystallites can diminish drastically the magnitude of internal stress with maintaining the higher hardness of as‐deposited films. Especially, the ball‐on‐disc tribometer measurements revealed that the nanocomposite film with 2.3 at.% Al content exhibited relatively better wear resistance and self‐lubrication performance with a friction coefficient of 0.06 and wear rate of 3.1 × 10?16 m3/ N·m under ambient air, which can be attributed to the relatively higher hardness, the formation of continuous graphitized transfer film on counterface and the reduced reaction of oxygen with carbon. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Cadmium sulphide (CdS) nanoparticles were grown by the reaction of sodium sulphide (Na2S) with Langmuir-Blodgett (LB) films of cadmium salts ofn-octadecylsuccinic acid (ODSU) and with LB films of ODSU in mixtures of octadecylamine and octadecyl alcohol. The results indicate that heterogeneous nucleation and aggregation in the pure ODSU LB films due to processes like Ostwald ripening are destabilized by the presence of the long-chain amine and alcohol in mixed systems. CdS nanoparticles in the LB films were monitored by UV-visible absorption spectra, which allow an estimation of the size of the particles. The morphology, size and nature of the nanocrystallites formed depend on whether the sulphidation was done on the pure film or in the mixed films. It is seen that particles of size around 1.6 nm were formed in ODSU/octadecylalcohol and ODSU/ octadecylamine mixed LB films while in pure ODSU films the size was about 2.7 nm. These films showed typical needle-shaped structures, as observed by the optical microscopic technique. Mean size and morphology were confirmed by transmission and scanning electron microscopy, while selective area electron diffraction patterns showed six-fold symmetry and indicated that the CdS crystals grow epitaxially with respect to the monolayer. Further, the crystallisation enhanced in the mixed LB films showed a characteristic zinc oxide (Wurtzite) structure compared with the pure ODSU matrix.  相似文献   

17.
AnticoagulationfactorI (ACFI)fromthevenomofAgki strodonacutusisabindingproteintoactivatedcoagulationfac torX (FXa)andpossessesmarkedanticoagulantactivity .Sin gleACFImoleculehasbeensuccessfullyimagedinairbytap pingmodeatomicforcemicroscopy (AFM )withhigh res…  相似文献   

18.
The present review reports on the preparation and atomic-scale characterization of the thinnest possible films of the glass-forming materials silica and germania. To this end state-of-the-art surface science techniques, in particular scanning probe microscopy, and density functional theory calculations have been employed. The investigated films range from monolayer to bilayer coverage where both, the crystalline and the amorphous films, contain characteristic XO4 (X=Si,Ge) building blocks. A side-by-side comparison of silica and germania monolayer, zigzag phase and bilayer films supported on Mo(112), Ru(0001), Pt(111), and Au(111) leads to a more general comprehension of the network structure of glass former materials. This allows us to understand the crucial role of the metal support for the pathway from crystalline to amorphous ultrathin film growth.  相似文献   

19.
Thin films of an amorphous polymer, polystyrene (PS), and a crystalline polymer, poly(ε-caprolactone) (PCL), blend were prepared by spin coating a toluene solution. Surface chemical compositions of the blend films were measured by X-ray photoelectron spectroscopy (XPS), and the surface and interface topographical changes were followed by atomic force microscopy (AFM). By changing the PS concentration and keeping the PCL concentration of the solution at 1 wt %, a great variety of morphologies were constructed. The results show that the morphology of the blend films can be divided into three regions with increasing PS concentration. In region I, PS island domains are embedded in PCL crystals when the PS concentration is lower than 0.3 wt % and the size of the PS island increases with increasing PS concentration. In region II, holes with different sizes surrounded by a low rim are obtained when the concentration of PS is between 0.35 and 0.5 wt %. After selectively washing the PS domains, we studied the interface morphology of PS/PCL and found that the upper PS-rich layer extended into the bottom PCL layer, forming a trench surrounding the holes. In region III, an enriched two-layer structure with the PS-rich layer on top of the blend films and the PCL-rich crystal layer underneath is obtained when the concentration of PS is higher than 0.5 wt %. Last, the formation mechanism of the different surface and interface morphologies is further discussed in terms of the vertical phase separation to a layered structure, followed by liquid-liquid dewetting and crystallization processes during spin coating.  相似文献   

20.
A combination of optical and atomic force microscopy (AFM) is used for probing changes in the morphology of polymer blend films that accompany phase ordering processes (phase separation and crystallization). The phase separation morphology of a “model” semi‐crystalline (polyethyleneoxide or PEO) and amorphous (polymethylmethacrylate or PMMA) polymer blend film is compared to previous observations on binary amorphous polymer blend films of polystyrene (PS) and polyvinylmethylether (PVME). The phase separation patterns are found to be similar except that crystallization of the film at high PEO concentrations obscures the observation of phase separation. The influence of film defects (e.g., scratches) and clay filler particles on the structure of the semi‐crystalline and amorphous polymer films is also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号