首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
利用耗散粒子动力学模拟研究了在水溶液中混合不同的线形三嵌段共聚物AxByCz和线形两嵌段共聚物AmBn对多室胶束的形貌多样性的影响.通过改变线形的三嵌段共聚物和两嵌段共聚物的链长来寻找多室胶束的形成条件.由线形三嵌段共聚物和线形两嵌段共聚物的不同混合形成的多室胶束结构是多种多样的,例如"蠕虫状"胶束、"汉堡包"胶束、"球上球"胶束、"核-壳-壳"胶束等等.多室胶束的整体形貌和内部结构的控制都可以从线形三嵌段共聚物和两嵌段共聚物的二元共混得到.为了表征获得的多室胶束结构,我们计算了密度图和成对分布函数图.在此工作中,可以获得和观察到复杂的多室胶束.结果表明,简单地混合线形的三嵌段共聚物和线形的两嵌段共聚物是一个控制多室胶束形貌和结构的有效方法,在工程实验中可以更简单更经济地形成多室胶束结构.因此,在设计新的多室胶束方面,聚合物共混仍然是未来值得更加关注的一个话题.  相似文献   

2.
The self-assembled morphologies of amphiphilic ABC star triblock copolymers consisting of hydrophilic A blocks and hydrophobic B and C blocks and the blends with their counterpart linear AB diblock copolymers in solution are investigated by 2D real-space implementation of self-consistent field theory (SCFT) simulation. The star triblock copolymers self-assemble in solution to form various micellar structures from hamburger, to segmented wormlike, to toroidal segmented micelles, and finally to vesicles with simultaneously increasing hydrophobic lengths of blocks B and C. When the length of hydrophobic blocks B and C is asymmetric, specific bead-on-string worm micelles are found. Particularly, when the star ABC triblock copolymer is in a strong segregation regime and both B and C blocks are strongly hydrophobic, quite long segmented wormlike micelles are obtained, which had not been found in previously investigated diblock and linear ABC triblock copolymers solution. Additionally, raspberry micelles with beads dispersed on the core also occur in the strong segregation regime of bulk star ABC triblock copolymers. Furthermore, the aggregate morphology of ABC star triblock copolymers is strongly influenced by the addition of linear AB diblock copolymers. The most significant feature is that the long segmented worms will become shorter, to form hamburger micelles with the addition of AB diblock copolymers. These simulations are in good agreement with the experimental findings by Lodge's group.  相似文献   

3.
The conformational behaviour of styrene-p-chlorostyrene diblock copolymers in dilute solutions was studied and compared with that of the corresponding triblock copolymers. Eight styrene-p-chlorostyrene diblock copolymers, of almost equimolar composition but with different molecular weights, were prepared using an anionic polymerization technique. The intrinsic viscosities of the copolymers were measured in non-selective solvents, such as toluene and 2-butanone, and in a selective solvent, cumene. The osmotic second virial coefficients of the diblock copolymers were measured in toluene. The data were analysed on the basis of two parameter theories. The unperturbed dimensions for the diblock copolymers can be expressed as a composition average of those for the parent homopolymers and the long-range interaction parameters of the diblock copolymers in toluene, 2-butanone and cumene are smaller than those of the triblock copolymers of the same composition. It means that the diblock copolymer chains in these 3 solvents had a more compact conformation than the triblock copolymers of the same composition and molecular weight.  相似文献   

4.
采用Monte Carlo模拟方法研究了具有相同链长和组分比的不同嵌段序列的AB两嵌段共聚物与ABA三嵌段共聚物在选择性溶剂中形成囊泡的动力学过程. 模拟结果表明, AB两嵌段共聚物囊泡的形成与ABA三嵌段共聚物囊泡的形成的动力学过程不同. 在慢速退火条件下, ABA三嵌段共聚物囊泡是通过亲水链段向胶束的表面和中心扩散而形成的, 而AB两嵌段共聚物囊泡则由片层弯曲闭合而形成. 相对而言, 退火速度对AB两嵌段共聚物囊泡形成的动力学过程没有显著影响, 其改变仅影响亲水链段与疏水链段发生相分离的难易程度. 当退火速度较快时, 亲水链段和疏水链段发生相分离的速度较快且相分离发生在囊泡形成之前; 而当退火速度较慢时亲水链段和疏水链段之间的相分离在囊泡形成之后仍在进行.  相似文献   

5.
The complex microstructures of amphiphilic ABC linear triblock copolymers in which one of the end blocks is relatively short and hydrophilic, and the other two blocks B and C are hydrophobic in a dilute solution, have been investigated by the real-space implementation of self-consistent field theory (SCFT) in two dimensions (2D). In contrast to diblock copolymers in solution, the aggregation of triblock copolymers are more complicated due to the presence of the second hydrophobic blocks and, hence, big ranges of parameter space controlling the morphology. By tailoring the hydrophobic degree and its difference between the blocks B and C, the various shapes of vesicles, circlelike and linelike micelles possibly corresponding to spherelike, and rodlike micelles in 3D, and especially, peanutlike micelles not found in diblock copolymers are observed. The transition from vesicles to circlelike micelles occurs with increasing the hydrophobicity of the blocks B and C, while the transition from circlelike micelles to linelike micelles or from the mixture of micelles and vesicles to the long linelike micelles takes place when the repulsive interaction of the end hydrophobic block C is stronger than that of the middle hydrophobic block B. Furthermore, it is favorable for dispersion of the block copolymer in the solvent into aggregates when the repulsion of the solvent to the end hydrophobic block is larger than that of the solvent to the middle hydrophobic block. Especially when the bulk block copolymers are in a weak segregation regime, the competition between the microphase separation and macrophase separation exists and the large compound micelle-like aggregates are found due to the macrophase separation with increasing the hydrophobic degree of blocks B and C, which is absent in diblock copolymer solution. The simulation results successfully reproduce the existing experimental ones.  相似文献   

6.
The mechanism by which the unique toroidal supramolecular assemblies were formed for triblock copolymers of acrylic acid (AA), methyl acrylate (MA), and styrene (S), PAA99-b-PMA73-b-PS66, was probed in this study by investigating the influences of the block copolymer compositions and sequences. Two triblock copolymers, PAA99-b-PMA73-b-PS66 and PAA99-b-PS76-b-PMA62, and two diblock copolymers, PAA99-b-PMA155 and PAA99-b-PS133, were studied under experimental solution-state conditions that involved a range of solvent/nonsolvent (tetrahydrofuran/water) compositions, each in the presence of 2,2'-(ethylenedioxy)bis(ethylamine). The resulting morphologies were determined by transmission electron microscopy. The failures to afford toroidal supramolecular assemblies from both diblock copolymers having comparable lengths of the total hydrophobic chain segment, either entirely PMA or entirely PS, and from the triblock copolymer having a reversed connection sequence for the hydrophobic (PMA and PS) segments demonstrate the unique self-assembly behaviors of triblock copolymers and the importance of the block copolymer sequence.  相似文献   

7.
嵌段结构对两亲嵌段共聚物水溶液行为的影响   总被引:2,自引:1,他引:2  
在合成了二种具有相同组成不同嵌段结构排布的共聚物基础上对它们溶液的物理化学行为用荧光探针的方法进行了研究,结果表明:由于结构排布的不同其物理化学行为有着较大的差异,三嵌段结构的共聚物较二嵌段者更易于形成胶束体系,而二嵌段共聚物则易于发生凝胶化,对上述结果进行讨论和解释.  相似文献   

8.
Through the use of the methods of turbidimetry, UV spectrophotometry, fluorescence spectroscopy, dynamic light scattering, and ultracentrifugation, micelle formation is studied for cationic (polysty-rene-poly-N-ethyl-4-vinylpyridium bromide) and anionic (polystyrene-sodium polyacrylate) diblock copolymers containing identical polystyrene blocks in dilute aqueous saline solutions. Mixing of aqueous dispersions of individual micelles is accompanied by the formation of only insoluble products, which likely are intermicellar interpolyelectrolyte complexes. At the same time, mixing of diblock copolymers in a nonselective solvent and its subsequent gradient replacement with water during suppressed interpolyelectrolyte interactions yields mixed diblock copolymer micelles, which are found to be dispersionally stable in an excess of charged units of any polymer component. The micelles are composed of an insoluble polystyrene core and a mixed interpolyelectrolyte corona, and their hydrodynamic characteristics are controlled by the ratio of charged units in the mixed diblock copolymers. The mixed micelles are found to be able to interact with the macromolecules of a homopolyelectrolyte, sodium poly(styrene sulfonate), in aqueous solutions and form ternary complexes. In this case, depending on the composition of the mixed micelles, ternary complexes can be dispersionally stable or can aggregate and precipitate.  相似文献   

9.
The paper provides new insights into the structure of Pt-containing diblock and triblock copolymers based on poly(ethylene oxide) (PEO) and poly(4-vinylpyridine) (P4VP), using a combination of atomic force microscopy (AFM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and anomalous small-angle X-ray scattering (ASAXS). Parallel studies using methods contributing supplemental structural information allowed us to comprehensively characterize sophisticated polymer systems during metalation and to exclude possible ambiguity of the data interpretation of each of the methods. AFM and TEM make available the determination of sizes of the micelles and of the Pt-containing micelle cores, respectively, while a combination of XRD, TEM, and ASAXS reveals Pt-nanoparticle size distributions and locations along with the structural information about the polymer matrix. In addition, for the first time, ASAXS revealed the organization of Pt-nanoparticle-filled diblock and triblock copolymers in the bulk. The nanoparticle characteristics are mainly determined by the type of block copolymer system in which they are found: larger particles (2.0-3.0 nm) are formed in triblock copolymer micelles, while smaller ones (1.5-2.5 nm) are found in diblock copolymer micelles. This can be explained by facilitated intermicellar exchange in triblock copolymer systems. For both systems, Pt nanoparticles have narrow particle size distributions as a result of a strong interaction between the nanoparticle surface and the P4VP units inside the micelle cores. The pH of the medium mainly influences the particle location rather than the particle size. A structural model of Pt-nanoparticle clustering in the diblock PEO-b-P4VP and triblock P4VP-b-PEO-b-P4VP copolymers in the bulk was constructed ab initio from the ASAXS data. This model reveals that nearly spherical micellar cores of about 10 nm in diameter (filled with Pt nanoparticles) aggregate forming slightly oblate hollow bodies with an outer diameter of about 40 nm.  相似文献   

10.
Block copolymers have been extensively studied due to their ability to spontaneously self‐organize into a wide variety of morphologies that are valuable in energy‐, medical‐, and conservation‐related (nano)technologies. While the phase behavior of bicomponent diblock and triblock copolymers is conventionally governed by temperature and individual block masses, it is demonstrated here that their phase behavior can alternatively be controlled through the use of blocks with random monomer sequencing. Block random copolymers (BRCs), i.e., diblock copolymers wherein one or both blocks are a random copolymer comprised of A and B repeat units, have been synthesized, and their phase behavior, expressed in terms of the order–disorder transition (ODT), has been investigated. The results establish that, depending on the block composition contrast and molecular weight, BRCs can microphase‐separate. We also report that large variation in incompatibility can be generated at relatively constant molecular weight and temperature with these new soft materials. This sequence‐controlled synthetic strategy is extended to thermoplastic elastomeric triblock copolymers differing in chemistry and possessing a random‐copolymer midblock.  相似文献   

11.
Water-soluble ABC triblock copolymers of methyl vinyl ether (MVE), ethyl vinyl ether (EVE), and methyl tri(ethylene glycol) vinyl ether (MTEGVE) of various block sequences and carrying 20 monomer units in each block were synthesized by living cationic polymerization. In addition to the triblocks, one AB diblock, one BA diblock, and one statistical copolymer of MVE and MTEGVE carrying 20 units of each type of monomer were synthesized as controls. Moreover, three homopolymers each carrying 20 units of MVE and end groups of varying hydrophobicity were synthesized using three different initiators. The molecular weights and molecular weight distributions of all the polymers were determined by gel permeation chromatography (GPC) in tetrahydrofuran (THF). The number average degrees of polymerization (DPns) and composition of all the polymers were calculated by proton nuclear magnetic resonance (1H-NMR) spectroscopy. The molecular weights and degrees of polymerization corresponded to the values expected from the monomer/initiator ratios. The calculated polydispersities were reasonably narrow at 1.3. Aqueous GPC studies at room temperature on the triblock copolymers showed that the polymers exist as isolated chains (unimers) in solution but they tend to assemble and form micelles in the presence of a sufficiently high salt concentration apparently due to the insolubility of the EVE units under the latter conditions. Triblocks with a different block sequence exhibited a different susceptibility to salt-induced micellization, as indicated by the retention volume of the micelles and the relative micelle/unimer peak areas. Similarly, the cloud points of the triblock copolymers covered a relatively wide temperature range from 56 to 72°C. These differences in micellization and cloud points suggest a profound effect of the location of the hydrophilic MTEGVE block on copolymer association. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1181–1195, 1997  相似文献   

12.
Although most ABA triblock copolymers are molecularly symmetric (i.e., the terminal blocks possess the same mass), molecularly asymmetric A1BA2 triblock copolymers are of greater fundamental interest in that they can be used to explore the transition from diblock to triblock copolymer in systematic fashion. In this study, we use a lattice Monte Carlo method known as the cooperative motion algorithm to simulate molten ABA triblock copolymers possessing a short terminal block to explore the effect of molecular asymmetry on the copolymer order–disorder transition (ODT). Reduced ODT temperatures, discerned by simultaneously analyzing several features of the simulation results, are found to compare favorably with experimental data. Of particular interest here is the initial depression in the ODT temperature for A1BA2 copolymers possessing a relatively short terminal (A2) block. This signature feature is successfully captured by the simulations and is found to be strongly dependent on composition, but weakly dependent on copolymer chain length. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

13.
Amphiphilic diblock and triblock copolymers of various block compositions based on hydrophilic poly(2‐ethyl‐2‐oxazoline) (PEtOz) and hydrophobic poly(ε‐caprolactone) were synthesized. The micelle formation of these block copolymers in aqueous media was confirmed by a fluorescence technique and dynamic light scattering. The critical micelle concentrations ranged from 35.5 to 4.6 mg/L for diblock copolymers and 4.7 to 9.0 mg/L for triblock copolymers, depending on the block composition. The phase‐transition behaviors of the block copolymers in concentrated aqueous solutions were investigated. When the temperature was increased, aqueous solutions of diblock and triblock copolymers exhibited gel–sol transition and precipitation, both of which were thermally reversible. The gel–sol transition‐ and precipitation temperatures were manipulated by adjustment of the block composition. As the hydrophobic portion of block copolymers became higher, a larger gel region was generated. In the presence of sodium chloride, the phase transitions were shifted to a lower temperature level. Sodium thiocyanate displaced the gel region and precipitation temperatures to a higher temperature level. The low molecular weight saccharides, such as glucose and maltose, contributed to the shift of phase‐transition temperatures to a lower temperature level, where glucose was more effective than maltose in lowering the gel–sol transition temperatures. The malonic acid that formed hydrogen bonds with the PEtOz shell of micelles was effective in lowering phase‐transition temperatures to 1.0M, above which concentration the block copolymer solutions formed complex precipitates. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2400–2408, 2000  相似文献   

14.
Joint micellization of two amphiphilic diblock copolymers is studied by velocity sedimentation, transmission electron microscopy, electrophoretic mobility measurements, and static light scattering. One of the diblock copolymers is a strong polyelectrolyte (polystyrene-block-poly(N-ethyl-4-vinylpyridinium bromide)), while the second one is a weakly charged or uncharged copolymer (polystyrene-block-poly(acrylic acid) or polystyrene-block-poly(4-vinylpyridine)). It is shown that the mixing of the diblock copolymers in a selective aqueous-organic solvent (DMF-methanol-water) leads to the formation of joint (hybrid) micelles and that the composition of these micelles is close to the composition of the polymer mixture. Micelles consist of an insoluble polystyrene core and a mixed corona composed of blocks of a strong polyelectrolyte and a weakly charged or uncharged copolymer. Aqueous dispersions of mixed micelles are obtained with the use of the dialysis technique, the spherical morphology of the micelles is ascertained, and their three-layered structure is proposed. The nonlinear dependence of the molecular mass of micelles on their composition is found. The decisive effect of electrostatic repulsion between strong polyelectrolyte units on the thermodynamics of micellization and the dispersion stability and molecular-mass characteristics of the mixed micelles is demonstrated.  相似文献   

15.
Block copolymers offer an interesting platform to study chemically triggered transitions in self-assembled structures. We have previously reported the oxidative degradation of vesicles made of poly(propylene sulfide)-poly(ethylene glycol) (PPS-PEG) copolymers. Here we propose a mechanism for vesicle degradation deduced from copolymer conformational changes occurring at the air/water interface in a Langmuir trough together with a reactive subphase. The hydrophobic PPS block is converted into hydrophilic poly(propylene sulfoxide) and poly(propylene sulfone) by oxidation upon exposure to 1% aqueous H(2)O(2) subphase. As a result, a dramatic increase in area per molecule at constant surface pressure (Pi) was observed, followed by an apparent decrease (recorded as decrease in area at constant Pi) due to copolymer dissolution. For monolayers at the air/water surface, the large interfacial tensions present suppress increases in local curvature for alleviating the increased hydrophilicity of the copolymer chains. By contrast, vesicles can potentially rearrange molecules in their bilayers to accommodate a changing hydrophilic-lipophilic balance (HLB). Similar time scales for monolayer rearrangement and vesicle degradation imply a common copolymer chain solubilization mechanism, which in vesicles lead to an eventual transition to aggregates of higher curvature, such as cylindrical and spherical micelles. Subtle differences in response to the applied surface pressure for the diblock compared to the triblock suggest an effect of the different chain mobility.  相似文献   

16.
Multicompartment micelles, especially those with highly symmetric surfaces such as patchy-like, patchy, and Janus micelles, have tremendous potential as building blocks of hierarchical multifunctional nanomaterials. One of the most versatile and powerful methods to obtain patchy multicompartment micelles is by the solution-state self-assembly of linear triblock copolymers. In this article, we applied the simulated annealing method to study the self-assembly of ABC linear terpolymers in C-selective solvents. Simulations predict a variety of patchy and patchy-like multicompartment micelles with high symmetry and also yield a detailed phase diagram to reveal how to control the patchy multicompartment micelle morphologies precisely. The phase diagram demonstrates that the internal segregated micellar structure depends on the ratio between the volume fractions of the two solvophobic blocks and their incompatibility, whereas the overall micellar shape depends on the copolymer concentration. The relationship between the interfacial energy, stretching energy of chains and the micellar morphology, micellar morphological transition are elucidated by computing the average contact number among the species, the mean square end-to-end distances of the whole terpolymers, the AB blocks in the terpolymers, the AB diblock copolymers, and angle distribution of terpolymers. The anchoring effect of the solvophilic C block on micellar structures is also examined by comparing the morphologies formed from ABC terpolymers and AB diblock copolymers.  相似文献   

17.
Poly[(L-histidine)-co-(L-phenylalanine)]-block-poly(ethylene glycol) (HF-b-PEG) diblock copolymers were synthesized to be used for preparation of pH-sensitive polymeric micelles. First, HF block was synthesized by ring opening copolymerization of L-histidine and L-phenylalanine N-carboxyanhydride, and then the resulting copolymer was coupled with PEG. The pKa value of diblock copolymer can be controlled by adjusting the histidine/phenylalanine ratio in HF block. It is observed that the block copolymers form micelles in aqueous media and that the micelles are spherical in shape with a unimodal distribution. The micelle is formed at pH higher than pKa of block copolymer while it is not formed at lower pH. This is because the protonation of histidine residue in the HF block converts the hydrophobic core into hydrophilic one at lower pH. Acid-Base titration profile of HF41(5600)-b-PEG, HF56(5500)-b-PEG, H(5100)-b-PEG and 0.1 N NaCl.  相似文献   

18.
A block copolymer of hydrophilic poly(ethylene oxide) and a hydrophobic poly(alkylene oxide) can associate in dilute aqueous solution to form micelles. The results of recent investigations of the micellisation behaviour and micelle properties of such copolymers are described. Copolymers of ethylene oxide with propylene oxide, 1,2‐butylene oxide or styrene oxide are considered, including aspects of their preparation. Experimental methods for determination of critical conditions for micellisation, micelle association number and spherical‐micelle radius are summarised. Effects of temperature, composition, block length and block architecture (diblock, triblock and cyclic‐diblock) are described and, where possible, related to the predictions of theory. Brief consideration is given to the dynamics of micelle formation/dissociation, to cylindrical micelles, and to effects of added salts.  相似文献   

19.
倪沛红 《高分子科学》2013,31(2):218-231
 Two pH-responsive amphiphilic diblock copolymers, namely polyisobutylene-block-poly[2-(N,N-dimethylamino)ethyl methacrylate] (PIB-b-PDMAEMA) and polyisobutylene-block-poly(metharylic acid) (PIB-b-PMAA), were synthesized via oxyanion-initiated polymerization, and their multiple self-assembly behaviors have been studied. An exo-olefin-terminated highly reactive polyisobutylene (HRPIB) was first changed to hydroxyl-terminated PIB (PIB-OH) via hydroboration-oxidation of C=C double bond in the chain end, and then reacted with KH to yield a potassium alcoholate of PIB (PIB-O-K+). PIB-O-K+ was immediately used as a macroinitiator to polymerize DMAEMA monomer, resulting in a cationic diblock copolymer PIB-b-PDMAEMA. With the similar synthesis procedure, the anionic diblock copolymer PIB-b-PMAA could be prepared via a combination of oxyanion-initiated polymerization of tert-butyl methacrylate (tBMA) and subsequent hydrolysis of tert-butyl ester groups in PtBMA block. The functional PIB and block copolymers have been fully characterized by 1H-NMR, FT-IR spectroscopy, and gel permeation chromatography (GPC). These samples allowed us to systematically investigate the effects of block composition on the pH responsivity and various self-assembled morphologies of the copolymers in THF/water mixed solvent. Transmission electron microscopy (TEM) images revealed that these diblock copolymers containing small amount of original PIB without exo-olefin-terminated group are able to self-assemble into micelles, vesicles with different particle sizes and cylindrical aggregates, depending on various factors including block copolymer composition, solvent polarity and pH value.  相似文献   

20.
The effects of blend composition on morphology, order-disorder transition (ODT), and chain conformation of symmetric ABA/AB copolymer blends confined between two neutral hard walls have been investigated by lattice Monte Carlo simulation. Only lamellar structure is observed in all the simulation morphologies under thermodynamic equilibrium state, which is supported by theoretical prediction. When the composition of AB diblock copolymer (phi) increases, both lamellar spacing and the corresponding ODT temperature increase, which can be attributed to the variation of conformation distribution of the diblock and the triblock copolymer chains. In addition, both diblock and triblock copolymer, chains with bridge conformation extend dramatically in the direction parallel to the surface when the system is in ordered state. Finally, the copolymer chain conformation depends strongly on both the blend composition and the incompatibility parameter chiN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号